Real-Time PCR Systems

Applied Biosystems 7900HT Fast Real-Time PCR System and 7300/7500/7500 Fast Real-Time PCR Systems

Chemistry Guide

(C) Copyright 2006 Applied Biosystems. All rights reserved.

For Research Use Only. Not for use in diagnostic procedures.
Information in this document is subject to change without notice. Applied Biosystems assumes no responsibility for any errors that may appear in this document. In no event shall Applied Biosystems be liable for incidental, special, multiple, or consequential damages in connection with or arising from the use of this document.

NOTICE TO PURCHASER:

PLEASE REFER TO THE APPLIED BIOSYSTEMS 7900HT FAST REAL-TIME PCR SYSTEM AND SDS ENTERPRISE DATABASE USER GUIDE, OR THE APPLIED BIOSYSTEMS 7300/7500/7500 FAST REAL-TIME PCR SYSTEM GETTING STARTED GUIDES FOR LIMITED LABEL LICENSE OR DISCLAIMER INFORMATION.

TRADEMARKS:

Applera, Applied Biosystems, AB (Design), ABI PRISM, Celera, Primer Express, MicroAmp, and VIC are registered trademarks and Celera Discovery System, FAM, JOE, MultiScribe, NED, ROX, TAMRA, and TET are trademarks of Applera Corporation or its subsidiaries in the U.S. and/or certain other countries.

AmpErase, AmpliTaq Gold, and TaqMan are registered trademarks of Roche Molecular Systems, Inc.
SYBR and Texas Red are registered trademarks of Molecular Probes, Inc.
All other trademarks are the sole property of their respective owners.

Part Number 4378658 Rev. A
09/2006

Contents

Preface
How to Use This Guide vii
How to Obtain More Information viii
How to Obtain Support ix
Safety and EMC Compliance Information
Safety Conventions Used in This Document xii
General Instrument Safety xiii
Chemical Safety xiii
Chemical Waste Safety xiv
Biological Hazard Safety xvi
Chapter 1 Introduction
Selecting an Assay Type 1-2
Selecting the Chemistry 1-6
Selecting an Assay Source 1-7
Performing the Assay 1-9
Selecting a Data Analysis Approach and Determining Results 1-9
Chapter 2 Chemistry Overview
SYBR Green I Dye Chemistry 2-2
TaqMan Probe-Based Chemistry 2-3
Selecting the Appropriate Chemistry 2-5
Minimizing DNA Contaminants 2-6
Chapter 3 Gene Expression and Other Quantitative Assays
Section 3.1 Introduction 3-3
About Quantification Assays 3-4
Selecting a Quantification Assay Chemistry 3-6
Purchasing a Preformulated or Custom-Designed Quantification Assay 3-7
TaqMan Gene Expression Assays 3-7
Custom TaqMan Gene Expression Assays 3-9
Designing Your Own Quantification Assay 3-10
Primer and Probe Design Using Primer Express Software 3-11
Selecting the Appropriate Reagent Configuration 3-14
Using the Universal Thermal Cycling Parameters 3-16
Optimizing Primer Concentrations 3-21
Optimizing the Probe Concentration 3-24
Using Multiplex PCR 3-27
Section 3.2 Selecting a Data Analysis Approach and Determining Results 3-31
Data Analysis 3-32
Relative or Absolute Quantification 3-32
Relative Standard Curve Method for Quantification 3-36
Comparative CT Method for Relative Quantification 3-42
Multiplex PCR (Same-Tube) Method for Relative Quantification 3-47
Standard Curve Method for Absolute Quantification 3-53
Chapter 4 Allelic Discrimination Assays
About Allelic Discrimination Assays 4-2
Purchasing an Applied Biosystems TaqMan SNP Genotyping Assay Product 4-4
TaqMan SNP Genotyping Assays 4-4
Custom TaqMan SNP Genotyping Assays Service 4-6
TaqMan Pre-Developed Assay Reagents for Allelic Discrimination 4-6
Designing Your Own Allelic Discrimination Assay 4-6
Probe Design Using Primer Express Software 4-7
Primer Design Using Primer Express Software 4-8
Selecting the Appropriate Reagent Configuration 4-9
Using the Universal Thermal Cycling Parameters 4-9
Chapter 5 Plus/Minus Assays
About Plus/Minus Assays Using an IPC 5-2
Purchasing the Applied Biosystems TaqMan Exogenous IPC Reagents Kit 5-4
Chapter 6 Troubleshooting
Troubleshooting Quantification Assays 6-2
Troubleshooting Allelic Discrimination Assays 6-7
Appendix A Formulas
Comparative CT Method for Relative Quantification A-1

Appendix B Part Numbers

Real-Time PCR Instruments B-2
Sequence Detection System Software B-3
Real-Time PCR Kits B-4
Real-Time PCR Reagent Kits B-5
Real-Time PCR RT-PCR Kits B-7
Real-Time PCR Reaction Kits (with Controls) B-8
Real-Time PCR Control Reagents B-9
Real-Time PCR Reagent Components B-10
Real-Time PCR Calibration Kits B-11
Real-Time PCR Disposables B-12
TaqMan Pre-Developed Assay Reagents for Allelic Discrimination B-13
Custom Oligonucleotide Synthesis B-14
Appendix C References
Index

Preface

How to Use This Guide

Purpose of This The Applied Biosystems Real-Time PCR Systems Chemistry Guide provides an easyGuide to-use reference on various techniques and applications, including:

- An introduction to real-time PCR chemistries
- Background information, design guidelines, and general procedures for the following assay types:
- Gene Expression and Quantification Assays
- Allelic Discrimination Assays
- Plus/Minus Assays
- Troubleshooting information

Audience This guide is intended for users of Applied Biosystems Real-Time PCR Systems instruments and chemistries who have a working knowledge of the polymerase chain reaction (PCR) process.

Text Conventions This guide uses the following conventions:

- Bold indicates user action. For example:

Type 0, then press Enter for each of the remaining fields.

- Italic text indicates new or important words and is also used for emphasis. For example:
Before analyzing, always prepare fresh matrix.
- A right arrow bracket ($>$) separates successive commands you select from a drop-down or shortcut menu. For example:
Select File $>$ Open $>$ Spot Set.
Right-click the sample row, then select View Filter > View All Runs.

User Attention Words

Two user attention words appear in Applied Biosystems user documentation. Each word implies a particular level of observation or action as described below:

Note: Provides information that may be of interest or help but is not critical to the use of the product.

IMPORTANT! Provides information that is necessary for proper instrument operation, accurate chemistry kit use, or safe use of a chemical.

Examples of the user attention words appear below:
Note: The size of the column affects the run time.
Note: The Calibrate function is also available in the Control Console.
IMPORTANT! To verify your client connection to the database, you need a valid Oracle user ID and password.
IMPORTANT! You must create a separate Sample Entry Spreadsheet for each 96-well microtiter plate.

Safety Alert Words

Safety alert words also appear in user documentation. For more information, see "Safety Alert Words" on page xii.

How to Obtain More Information

Related Documentation

When using this chemistry guide, you may find the following documents to be helpful references.

- Applied Biosystems 7900HT Fast Real-Time PCR System and SDS Enterprise Database User Guide (PN 4351684)
- Applied Biosystems 7900HT Fast Real-Time PCR System User Bulletin: Performing Fast Gene Quantification (PN 4352533)
- RQ Manager Software User Guide (PN 4351670)
- SNP Manager Software User Guide (PN 4351671)
- Primer Express ${ }^{\circledR}$ Software Version 3.0 Getting Started Guide (PN 4362460)
- TaqMan ${ }^{\circledR}$ Fast Universal PCR Master Mix (2X) Protocol (PN 4351891)
- TaqMan ${ }^{\circledR}$ Gene Expression Assays Protocol (PN 4333458)
- TaqMan ${ }^{\circledR}$ SNP Genotyping Assays Protocol (PN 4332856)

See the table below to find more documentation and their associated part numbers.

Document Title	Online Help P/N	P/N
Applied Biosystems 7300/7500/7500 Fast Real-Time PCR System Plus/Minus Detection Getting Started Guide	4347821	4378652
Applied Biosystems 7300/7500/7500 Fast Real-Time PCR System Allelic Discrimination Getting Started Guide	4347822	4378653
Applied Biosystems 7300/7500/7500 Fast Real-Time PCR System Relative Quantification Getting Started Guide	4347824	4378655
Applied Biosystems 7300/7500/7500 Fast Real-Time PCR System Absolute Quantification Getting Started Guide	4347825	4378656
Applied Biosystems 7300/7500/7500 Fast Real-Time PCR System Installation and Maintenance Guide	4347828	4378657
Applied Biosystems 7500 FAST Real-Time PCR System, QRC	4362285	4378659

Note: For additional documentation, see "How to Obtain Support" on page ix.

Send Us Your Applied Biosystems welcomes your comments and suggestions for improving its Comments user documents. You can e-mail your comments to:
techpubs@appliedbiosystems.com

How to Obtain Support

For the latest services and support information for all locations, go to http://www.appliedbiosystems.com, then click the link for Support.

At the Support page, you can:

- Search through frequently asked questions (FAQs)
- Submit a question directly to Technical Support
- Order Applied Biosystems user documents, MSDSs, certificates of analysis, and other related documents
- Download PDF documents
- Obtain information about customer training
- Download software updates and patches

In addition, the Support page provides access to worldwide telephone and fax numbers to contact Applied Biosystems Technical Support and Sales facilities.

Safety and EMC Compliance Information

This section includes the following topics:
Safety Conventions Used in This Document. xii
General Instrument Safety. xiii
Chemical Safety . xiii
Chemical Waste Safety .
Biological Hazard Safety. xvi

Safety Conventions Used in This Document

Four safety alert words appear in Applied Biosystems user documentation at points in the document where you need to be aware of relevant hazards. Each alert word-IMPORTANT, CAUTION, WARNING, DANGER-implies a particular level of observation or action, as defined below:

Definitions

IMPORTANT! - Indicates information that is necessary for proper instrument operation, accurate chemistry kit use, or safe use of a chemical.

CAUTION - Indicates a potentially hazardous situation that, if not avoided, may result in minor or moderate injury. It may also be used to alert against unsafe practices.

WARNING - Indicates a potentially hazardous situation that, if not avoided, could result in death or serious injury.

DANGER - Indicates an imminently hazardous situation that, if not avoided, will result in death or serious injury. This signal word is to be limited to the most extreme situations.

Except for IMPORTANTs, each safety alert word in an Applied Biosystems document appears with an open triangle figure that contains a hazard symbol. These hazard symbols are identical to the hazard icons that are affixed to Applied Biosystems instruments.

Examples

The following examples show the use of safety alert words:
IMPORTANT! You must create a separate a Sample Entry Spreadsheet for each 96-well plate.

The lamp is extremely hot. Do not touch the lamp until it has cooled to room temperature.

[^0]
General Instrument Safety

! WARNING PHYSICAL INJURY HAZARD. Use this product only as specified in this document. Using this instrument in a manner not specified by Applied Biosystems may result in personal injury or damage to the instrument.

Chemical Safety

Chemical Hazard
 Warning

WARNING CHEMICAL HAZARD. Before handling any chemicals, refer to the Material Safety Data Sheet (MSDS) provided by the manufacturer, and observe all relevant precautions.

WARNING CHEMICAL HAZARD. All chemicals in the instrument, including liquid in the lines, are potentially hazardous. Always determine what chemicals have been used in the instrument before changing reagents or instrument components. Wear appropriate eyewear, protective clothing, and gloves when working on the instrument.
! WARNING CHEMICAL HAZARD. Four-liter reagent and waste bottles can crack and leak. Each 4-liter bottle should be secured in a low-density polyethylene safety container with the cover fastened and the handles locked in the upright position. Wear appropriate eyewear, clothing, and gloves when handling reagent and waste bottles.

WARNING CHEMICAL STORAGE HAZARD. Never collect or store waste in a glass container because of the risk of breaking or shattering. Reagent and waste bottles can crack and leak. Each waste bottle should be secured in a lowdensity polyethylene safety container with the cover fastened and the handles locked in the upright position. Wear appropriate eyewear, clothing, and gloves when handling reagent and waste bottles.

About MSDSs Chemical manufacturers supply current Material Safety Data Sheets (MSDSs) with shipments of hazardous chemicals to new customers. They also provide MSDSs with the first shipment of a hazardous chemical to a customer after an MSDS has been updated. MSDSs provide the safety information you need to store, handle, transport, and dispose of the chemicals safely.

Each time you receive a new MSDS packaged with a hazardous chemical, be sure to replace the appropriate MSDS in your files.

Obtaining You can obtain from Applied Biosystems the MSDS for any chemical supplied by
MSDSs Applied Biosystems. This service is free and available 24 hours a day.
To obtain MSDSs:

1. Go to https://docs.appliedbiosystems.com/msdssearch.html
2. In the Search field, type in the chemical name, part number, or other information that appears in the MSDS of interest. Select the language of your choice, then click Search.
3. Find the document of interest, right-click the document title, then select any of the following:

- Open - To view the document
- Print Target - To print the document
- Save Target As - To download a PDF version of the document to a destination that you choose

4. To have a copy of a document sent by fax or e-mail, select Fax or Email to the left of the document title in the Search Results page, then click RETRIEVE DOCUMENTS at the end of the document list.
5. After you enter the required information, click View/Deliver Selected Documents Now.

Chemical Safety Guidelines

To minimize the hazards of chemicals:

- Read and understand the Material Safety Data Sheets (MSDS) provided by the chemical manufacturer before you store, handle, or work with any chemicals or hazardous materials. (See "About MSDSs" on page xiii.)
- Minimize contact with chemicals. Wear appropriate personal protective equipment when handling chemicals (for example, safety glasses, gloves, or protective clothing). For additional safety guidelines, consult the MSDS.
- Minimize the inhalation of chemicals. Do not leave chemical containers open. Use only with adequate ventilation (for example, fume hood). For additional safety guidelines, consult the MSDS.
- Check regularly for chemical leaks or spills. If a leak or spill occurs, follow the manufacturer's cleanup procedures as recommended on the MSDS.
- Comply with all local, state/provincial, or national laws and regulations related to chemical storage, handling, and disposal.

Chemical Waste Safety

Chemical Waste
Hazard
! CAUTION HAZARDOUS WASTE. Refer to Material Safety Data Sheets and local regulations for handling and disposal.

WARNING CHEMICAL WASTE HAZARD. Wastes produced by Applied Biosystems instruments are potentially hazardous and can cause injury, illness, or death.

WARNING CHEMICAL STORAGE HAZARD. Never collect or store waste in a glass container because of the risk of breaking or shattering. Reagent and waste bottles can crack and leak. Each waste bottle should be secured in a lowdensity polyethylene safety container with the cover fastened and the handles locked in the upright position. Wear appropriate eyewear, clothing, and gloves when handling reagent and waste bottles.

Chemical Waste Safety Guidelines

To minimize the hazards of chemical waste:

- Read and understand the Material Safety Data Sheets (MSDSs) provided by the manufacturers of the chemicals in the waste container before you store, handle, or dispose of chemical waste.
- Provide primary and secondary waste containers. (A primary waste container holds the immediate waste. A secondary container contains spills or leaks from the primary container. Both containers must be compatible with the waste material and meet federal, state, and local requirements for container storage.)
- Minimize contact with chemicals. Wear appropriate personal protective equipment when handling chemicals (for example, safety glasses, gloves, or protective clothing). For additional safety guidelines, consult the MSDS.
- Minimize the inhalation of chemicals. Do not leave chemical containers open. Use only with adequate ventilation (for example, fume hood).For additional safety guidelines, consult the MSDS.
- Handle chemical wastes in a fume hood.
- After emptying the waste container, seal it with the cap provided.
- Dispose of the contents of the waste tray and waste bottle in accordance with good laboratory practices and local, state/provincial, or national environmental and health regulations.

Waste Disposal
If potentially hazardous waste is generated when you operate the instrument, you must:

- Characterize (by analysis if necessary) the waste generated by the particular applications, reagents, and substrates used in your laboratory.
- Ensure the health and safety of all personnel in your laboratory.
- Ensure that the instrument waste is stored, transferred, transported, and disposed of according to all local, state/provincial, and/or national regulations.

IMPORTANT! Radioactive or biohazardous materials may require special handling, and disposal limitations may apply.

- Be aware that high solvent flow rates ($\sim 40 \mathrm{~mL} / \mathrm{min}$) may cause a static charge to build up on the surface of the tubing. Electrical sparks may result.

Biological Hazard Safety

General Biohazard WARNING BIOHAZARD. Biological samples such as tissues, body fluids, and blood of humans and other animals have the potential to transmit infectious diseases. Follow all applicable local, state/provincial, and/or national regulations. Wear appropriate protective eyewear, clothing, and gloves. Read and follow the guidelines in these publications:

- U.S. Department of Health and Human Services guidelines published in Biosafety in Microbiological and Biomedical Laboratories (stock no. 017-040-00547-4; http://bmbl.od.nih.gov)
- Occupational Safety and Health Standards, Bloodborne Pathogens (29 CFR§1910.1030; http://www.access.gpo.gov/nara/cfr/ waisidx_01/29cfr1910a_01.html).

Additional information about biohazard guidelines is available at:
http://www.cdc.gov

Introduction

This chapter covers:
Selecting an Assay Type 1-2
Selecting the Chemistry 1-6
Selecting an Assay Source. 1-7
Performing the Assay 1-9
Selecting a Data Analysis Approach and Determining Results 1-9

Selecting an Assay Type

Real-Time PCR Instruments

Applied Biosystems has five instruments in its Real-Time PCR Systems product line:

- Applied Biosystems 7900HT Fast Real-Time PCR System (7900HT System)
- ABI Prism ${ }^{\circledR} 7900$ HT Sequence Detection System, upgradeable to the Applied Biosystems 7900HT Fast Real-Time PCR System with the 7900HT System Fast Service Upgrade
- Applied Biosystems 7300 Real-Time PCR System (7300 System)
- Applied Biosystems 7500 Real-Time PCR System (7500 System), upgradeable to the Applied Biosystems 7500 Fast Real-Time PCR System with the 7500 Fast Real-Time PCR Upgrade Kit
- Applied Biosystems 7500 Fast Real-Time PCR System (7500 Fast System)

Note: For details on these instruments, refer to the instrument user guides. See "How to Obtain More Information" on page viii for a list of the user guide titles and part numbers.

Assay Types
Supported
The three assay types (quantification, allelic discrimination, and plus/minus) can be categorized into real-time PCR and endpoint assays as shown in Table 1-1.

Table 1-1 Assay types

Assay Category	Function	Procedure Description
Real-Time PCR	Quantification, including: - One-step reverse transcription polymerase chain reaction (RT-PCR) or RNA quantification - Two-step RT-PCR for RNA quantification - DNA quantification	"About Quantification Assays" on page 3-4
Endpoint Assay	Allelic Discrimination	"About Allelic Discrimination Assays" on page 4-2
	Plus/Minus	"About Plus/Minus Assays Using an IPC" on page 5-2

Real-time PCR systems can be used to perform the assay types in Table 1-2.
Table 1-2 Real-time PCR systems and assay types

Instrument	Real-Time Assay	Endpoint Assay	
	Gene Expression	Allelic Discrimination	Plus/Minus with IPC
7900HT System with Standard 96- or 384-Well Block Module	Yes	Yes	Yes
7900HT System with Fast 96-Well Block Module	Yes	Yes	No
7300 System	Yes	Yes	Yes
7500 System	Yes	Yes	Yes
7500 Fast System	Yes	Yes	Yes

Table 1-3 Consumable types supported

Instrument	Consumable				
	96-Well Optical Reaction Plate	Optical 96Well Fast Thermal Cycling Plate	384-Well Optical Reaction Plate	TaqMan ${ }^{\circledR}$ Low Density Array ${ }^{\text {a }}$	Individual Optical Tubes
7900HT System with Standard 384Well Block	No	No	Yes	No	No
7900HT System with Standard 96Well Block	Yes	No	No	No	No
7900HT System with Fast 96-Well Block	No	Yes	No	No	No
7900HT System with 7900 HT TaqMan ${ }^{\circledR}$ Low Density Array Block	No	No	No	Yes	No
7300 System	Yes	No	No	No	Yes
7500 System	Yes	No	No	No	Yes
7500 Fast System	No	Yes	No	No	No

a. For more information on the TaqMan Low Density Array, see the Applied Biosystems 7900HT Fast Real-Time PCR System and SDS Enterprise Database User Guide.

About Real-Time PCR Assays

Real-time PCR is the ability to monitor the progress of the PCR as it occurs. Data is collected throughout the PCR process rather than at the end of the PCR process.

In real-time PCR, reactions are characterized by the point in time during cycling when amplification of a target is first detected rather than the amount of target accumulated after a fixed number of cycles.

About One-Step RT-PCR

RT-PCR is used to quantify RNA. RT-PCR can be performed as a one-step or twostep procedure.
The one-step RT-PCR performs RT as well as PCR in a single buffer system (Figure 1-1). The reaction proceeds without the addition of reagents between the RT and PCR steps. One-step RT-PCR offers the convenience of a single-tube preparation for RT and PCR amplification. However, the carryover prevention enzyme, AmpErase ${ }^{\circledR}$ UNG (uracil-N-glycosylase), cannot be used with one-step RT-PCR. In one-step RT-PCR, the presence of UNG would destroy the cDNA as it is being made. For information about UNG, see "Using UNG to Minimize Reamplification Carryover Products" on page 2-6.

Figure 1-1 Schematic representation of one-step RT-PCR

About Two-Step RT-PCR

Two-step RT-PCR is performed in two separate reactions (Figure 1-2). Two-step RTPCR is useful when detecting multiple transcripts from a single cDNA reaction, or when storing a portion of the cDNA for later use. When you perform PCR using dUTP as a base in the RT step, you can use AmpErase UNG enzyme to prevent carryover contamination. For information about UNG, see "Using UNG to Minimize Reamplification Carryover Products" on page 2-6.

Figure 1-2 Schematic representation of two-step RT-PCR

Table 1-4 summarizes the differences between one- and two-step RT-PCR.

Comparison of RT-PCR Methods

Table 1-4 Primers for one- and two-step RT-PCR

Method	Primers for cDNA Synthesis	Comments
One-step	Sequence-specific reverse primer	Requires single reaction mix UNG cannot be used
	Random hexamers	cDNA can be stored for later use UNG can be used
	Oligo d(T) $)_{16}$	Requires two reaction mixes
	Sequence-specific reverse primers	

[^1]
Selecting the Chemistry

Applied Biosystems has developed two types of chemistries that can be used to detect PCR products on real-time PCR instruments:

- TaqMan Probe-based fluorogenic 5^{\prime} nuclease chemistry
- SYBR $^{\circledR}$ Green I dye chemistry

These chemistries are discussed in detail in Chapter 2.

TaqMan ProbeBased Chemistry

Applied Biosystems TaqMan Probe-based chemistry uses a fluorogenic probe to enable the detection of a specific PCR product as it accumulates during PCR cycles. The Applied Biosystems patented fluorogenic probe design, which incorporates the reporter dye on the 5^{\prime} end and the quencher dye on the 3^{\prime} end, has greatly simplified the design and synthesis of effective 5^{\prime} fluorogenic nuclease assay probes (Livak, Flood, et al., 1995).

Assay Types that Use TaqMan Probe-Based Chemistry

The TaqMan Probe-based chemistry can be used for the following assay types:

- Quantification, including:
- One-step RT-PCR for RNA quantification
- Two-step RT-PCR for RNA quantification
- DNA quantification
- Allelic Discrimination
- Plus/Minus

SYBR Green I
Dye Chemistry

The SYBR Green I dye chemistry uses SYBR Green I dye, which binds to doublestranded DNA, to detect PCR products as they accumulate during PCR cycles.

An important difference between the TaqMan probes and SYBR Green I dye chemistries is that the SYBR Green I dye chemistry binds all double-stranded DNA, including nonspecific reaction products. A well-optimized reaction is therefore essential for accurate results. You can not perform multiplex PCR using SYBR Green I dye.

Assay Types that Use SYBR Green I Dye Chemistry

The SYBR Green I dye chemistry can be used for quantification assay types including:

- One-step RT-PCR for RNA quantification
- Two-step RT-PCR for RNA quantification
- DNA quantification

Selecting an Assay Source

After you select an assay type and chemistry, you can:

- Purchase predesigned probes and primers (TaqMan ${ }^{\circledR}$ Gene Expression Assays and TaqMan ${ }^{\circledR}$ SNP Genotyping Assays)
- Use the Applied Biosystems Custom TaqMan ${ }^{\circledR}$ Gene Expression Assays or Custom TaqMan ${ }^{\circledR}$ SNP Genotyping Assays service to custom-design probes and primers, based on your sequence submission.
- Design your own TaqMan probe and primers using Primer Express ${ }^{\circledR}$ software, then purchase the probe and primers.

Note: TaqMan Gene Expression and Custom TaqMan Gene Expression Assays are intended for use in singleplex reactions.

TaqMan Gene Expression and TaqMan SNP Genotyping Assays

TaqMan Gene Expression and TaqMan SNP Genotyping Assays provide the most comprehensive collection of biologically informative, predesigned, qualitycontrolled, and validated probes and primers ready to use on an Applied Biosystems Real-Time PCR System.
All assays are designed using Applied Biosystems powerful bioinformatics pipeline and software, incorporating information from the Celera Discovery System ${ }^{\mathrm{TM}}$ Online Platform (CDS) and public databases.
TaqMan ${ }^{\circledR}$ Assays include:

- TaqMan SNP Genotyping Assays (PN 4331183 and PN 4351379) for genotyping single nucleotide polymorphisms (SNPs). The products use the 5^{\prime} nuclease assay for amplifying and detecting specific SNP alleles in purified human genomic DNA samples. Each assay allows researchers to genotype individuals for a specific SNP.
Each primer and probe set was validated on two to four populations, each consisting of approximately 45 genomic DNA samples to ensure the highest quality and to provide population-specific allele frequency information.
- TaqMan Gene Expression Assays (PN 4331182 and 4351372) are a comprehensive collection of predesigned gene-specific primer and probe sets for quantitative gene expression studies on human, mouse, rat, Arabidopsis, and Drosophila genes. TaqMan Gene Expression Assays are built on Applied Biosystems 5^{\prime} nuclease chemistry. Each assay consists of two unlabeled PCR primers and one $\mathrm{FAM}^{\mathrm{TM}}$ dye-labeled probe. All components are quality-control tested and formulated as a $20 \times$ mix. Additionally, a number of TaqMan ${ }^{\circledR}$ Endogenous Controls are available for all species, with either VIC^{\circledR} dye-labeled or $\mathrm{FAM}^{\mathrm{TM}}$ dye-labeled TaqMan ${ }^{\circledR}$ MGB (minor groove binder) probes. TaqMan Endogenous Controls with VIC dye labels are primer-limited.
For information on available products and specific product uses, contact your Applied Biosystems representative or visit the Applied Biosystems web site. See "How to Obtain Support" on page ix.

Custom TaqMan

 SNP Genotyping and Gene Expression AssaysCustom TaqMan SNP Genotyping and Custom TaqMan Gene Expression Assays are assay development services that design, synthesize, formulate and deliver analytically-controlled primer and probe sets for SNP genotyping and gene expression assays based on sequence information submitted by the customer. For human SNP genotyping assays, an additional functional test is performed.

- Customers submit target sequences using File Builder, a free application available on the Applied Biosystems Web site (available for download from the Custom TaqMan Genotyping and Gene Expression Assays Web pages).
- Customers can submit any number of target sequences, either directly to the eStore (through File Builder) or by e-mailing or regularly mailing the File Builder text file to the regional Applied Biosystems sales office. Ordering details are in the File Builder Web Help Guide or in the Ordering Information sidebar link on the Custom TaqMan Genotyping and Gene Expression Assays Web pages.
- Assays are available in three scales: small ($20 \times, 750 \mu \mathrm{~L}$), medium $(40 \times, 3 \mathrm{~mL})$, and large ($80 \times, 12 \mathrm{~mL}$).
- Applied Biosystems provides ready-to-use probe and primer sets for each target sequence in a single tube, along with an assay information file, which contains information about each assay in the order, including primer and probe sequences.
- Customers are charged only for probe and primer sets that successfully pass manufacturing quality controls.

Visit the following Applied Biosystems Web sites for more information about Custom TaqMan SNP Genotyping Assays:
http://www.allsnps.com
and Custom TaqMan Gene Expression Assays:
http://www.allgenes.com

Designing Your Own Assay

When designing your own assay, follow the assay design guidelines described in this document. These guidelines have been developed by Applied Biosystems to optimize results when using real-time PCR instruments and TaqMan probes or SYBR Green I dye chemistries.

Applied Biosystems assay design guidelines do not guarantee that all assays will provide the same level of performance and sensitivity. Even the most scrupulous design parameters cannot account for all the possible variables that can exist between two different assay systems.

Guidelines for quantification and allelic discrimination are described in "Designing Your Own Quantification Assay" on page 3-10 and "Designing Your Own Allelic Discrimination Assay" on page 4-6.

Important Design Steps

Applied Biosystems Assay Design Guidelines specify that you:

- Design primers and probes using Primer Express ${ }^{\circledR}$ Software - The Primer Express software is used to design primers and probes. The software uses a set of default parameters to automatically select primer and probe sets.
- Select the appropriate reagent configuration - There are several TaqMan and SYBR Green I dye chemistry kits available. The reagent configuration you use depends on your assay type. For quantification assays, see "Selecting the Appropriate Reagent Configuration" on page 3-14.
- Use universal thermal cycling parameters - All assay types designed using Applied Biosystems assay design guidelines can be run using universal thermal cycling parameters. This protocol design eliminates the need to optimize the thermal cycling parameters and allows multiple assays to be run on the same plate without sacrificing performance. Fast PCR thermal cycling parameters are unique to Fast applications.
- Use default primer and probe concentrations or optimize primer and probe concentrations - When you use Applied Biosystems assay design guidelines, you can use default primer and probe concentrations for non-multiplex optimized assays, or you can optimize primer and probe concentrations. For quantification assays, see "Optimizing Primer Concentrations" on page 3-21 and "Optimizing the Probe Concentration" on page 3-24.

IMPORTANT! To achieve the highest level of success, use all the assay design guidelines together because many of the individual components of the system are interdependent.

To illustrate this point, consider the following example. The ability to use universal thermal cycling parameters is based on the assumption that the selected primers have a melting temperature $\left(\mathrm{T}_{\mathrm{m}}\right)$ of 58 to $60^{\circ} \mathrm{C}$ as calculated by Primer Express software. If the primers do not have the correct $\mathrm{T}_{\mathrm{m}} \mathrm{s}$, or even if the $\mathrm{T}_{\mathrm{m}} \mathrm{s}$ have been calculated with a primer design software package other than Primer Express, optimal performance and even functionality of the assay cannot be assured.
Visit the Applied Biosystems support web site to access a variety of tutorials on how to use the Primer Express software for designing real-time quantitative assays. See "How to Obtain Support" on page ix.

Performing the Assay

For information about performing the assay on your system, see the documentation provided with your system. For information about laboratory practices, see "Minimizing DNA Contaminants" on page 2-6.

Selecting a Data Analysis Approach and Determining Results

For information, see Section 3.2, "Selecting a Data Analysis Approach and Determining Results," on page 3-31.

Chemistry Overview

This chapter covers:
SYBR Green I Dye Chemistry 2-2
TaqMan Probe-Based Chemistry 2-3
Selecting the Appropriate Chemistry 2-5
Minimizing DNA Contaminants 2-6

SYBR Green I Dye Chemistry

Development of
SYBR Green I Dye Chemistry

Small molecules that bind to double-stranded DNA can be divided into two classes: intercalators and minor groove-binders (MGBs). Higuchi (Higuchi et al., 1992) used the intercalator ethidium bromide for their real-time detection of PCR. Hoechst 33258 is an example of a minor groove-binding dye whose fluorescence increases when bound to double-stranded DNA (Higuchi et al., 1993).

Regardless of the binding method, there are at least two requirements for a DNA binding dye for real-time detection of PCR products:

- Increased fluorescence when bound to double-stranded DNA
- No inhibition of PCR

Applied Biosystems has developed conditions that permit the use of the SYBR ${ }^{\circledR}$ Green I dye in PCR without PCR inhibition and with increased sensitivity of detection compared with ethidium bromide.

How the SYBR Green I Dye Chemistry Works

The SYBR Green I dye chemistry uses the SYBR Green I dye to detect PCR products by binding to double-stranded DNA formed during PCR. Here's how it works:

1. When SYBR Green PCR Master Mix is added to a sample, SYBR Green I dye immediately binds to all double-stranded DNA.
2. During the PCR, AmpliTaq Gold ${ }^{\circledR}$ DNA Polymerase amplifies the target sequence, which creates the PCR product, or "amplicon."
3. The SYBR Green I dye then binds to each new copy of double-stranded DNA.
4. As the PCR progresses, more amplicon is created.

Since the SYBR Green I dye binds to all double-stranded DNA, the result is an increase in fluorescence intensity proportional to the amount of double-stranded PCR product produced.
Figure 2-1 illustrates this process.

Step 1

The SYBR Green I dye within the SYBR Green PCR Master Mix immediately binds with all double-stranded DNA present in the sample.

Step 2

During PCR, AmpliTaq Gold DNA Polymerase amplifies each target.

Step 3

The SYBR Green I dye then binds to each new copy of double-stranded DNA.

Figure 2-1 Representation of how the SYBR Green I dye acts on doublestranded DNA during one extension phase of PCR

TaqMan Probe-Based Chemistry

Development of TaqMan ProbeBased Chemistry

Initially, intercalator dyes were used to measure real-time PCR products. The primary disadvantage to these type of probes is that they detect accumulation of both specific and nonspecific PCR products.

Real-time systems for PCR were improved by the introduction of fluorogenic-labeled probes that use the 5^{\prime} nuclease activity of the Applied Biosystems hot-start DNA polymerase system. The availability of these fluorogenic probes enabled the development of a real-time method for detecting only specific amplification products.

How TaqMan
Real-Time Chemistry Works

The TaqMan ${ }^{\circledR}$ Probe-based chemistry uses a fluorogenic probe to enable the detection of a specific PCR product as it accumulates during PCR. Here is how it works (Figure 2-2):

1. An oligonucleotide probe is constructed with a fluorescent reporter dye bound to the 5^{\prime} end and a quencher on the 3^{\prime} end.
While the probe is intact, the proximity of the quencher greatly reduces the fluorescence emitted by the reporter dye by fluorescence resonance energy transfer (FRET; Förster resonance, Förster, V. T. 1948) through space.
2. If the target sequence is present, the probe anneals between primer sites and is cleaved by the 5^{\prime} nuclease activity of Applied Biosystems hot-start DNA polymerase system during extension.
3. This cleavage of the probe:

- Separates the reporter dye from the quencher, increasing the reporter dye signal.
- Removes the probe from the target strand, allowing primer extension to continue to the end of the template strand. Thus, inclusion of the probe does not inhibit the overall PCR process.

4. Additional reporter dye molecules are cleaved from their respective probes with each cycle, resulting in an increase in fluorescence intensity proportional to the amount of amplicon produced. The higher the starting copy number of the nucleic acid target, the sooner a significant increase in fluorescence is observed.

Figure 2-2 illustrates this process.

Figure 2-2 Representation of how the 5^{\prime} nuclease chemistry uses a fluorogenic probe to enable detection of a specific PCR product

Two Types of TaqMan Probes

Applied Biosystems offers two types of TaqMan probes (Table 2-1):

- TaqMan probes with TAMRA ${ }^{\text {TM }}$ dye as quencher
- TaqMan MGB (minor groove-binder) probes with non fluorescent quencher (NFQ)

Table 2-1 Types of TaqMan probes

		5^{\prime} Label Dye	3^{\prime} Label Dye	Other Features
Custom Probes	Custom TaqMan ${ }^{\circledR}$ Probe	$\begin{aligned} & \mathrm{FAM}^{\mathrm{TM}}, \text { TET }^{\mathrm{TM}} \\ & \text { or } \mathrm{VIC}^{\circledR} \end{aligned}$	TAMRA	-
	Custom TaqMan ${ }^{\circledR}$ MGB Probe	$\begin{aligned} & \text { FAM }^{\text {TM }}, \text { TET }^{\text {TM }}, \\ & \text { NED }^{\text {MM }} \text {, or } \mathrm{VIC}^{®} \end{aligned}$	Nonfluorescent quencher	minor groovebinder
TaqMan Assays (TaqMan MGB)	Gene Expression	FAM	Nonfluorescent quencher	minor groovebinder
	SNP Genotyping	FAM, VIC	Nonfluorescent quencher	minor groovebinder
Custom TaqMan Assays (TaqMan MGB)	Gene Expression	FAM	Nonfluorescent quencher	minor groovebinder
	SNP Genotyping	FAM, VIC	Nonfluorescent quencher	minor groovebinder

TaqMan MGB Probes Recommended

Applied Biosystems recommends the general use of TaqMan MGB probes, especially when conventional TaqMan probes exceed 30 nucleotides. The TaqMan MGB probes contain:

- A nonfluorescent quencher at the $\mathbf{3}^{\prime}$ end

Allows the Real-Time PCR instruments to measure the reporter dye contributions more precisely because the quencher does not fluoresce.

- A minor groove-binder at the $\mathbf{3}^{\prime}$ end

Increases the melting temperature (T_{m}) of probes (Afonina et al., 1997; Kutyavin et al., 1997), allowing the use of shorter probes. Consequently, the TaqMan MGB probes exhibit greater differences in T_{m} values between matched and mismatched probes, which provides more accurate allelic discrimination.

Selecting the Appropriate Chemistry

The SYBR Green I dye and TaqMan Probe-based chemistry can be used for the assay types listed in Table 2-2. See Table 2-3 for considerations for choosing SYBR Green or TaqMan Probe-based chemistry.

Table 2-2 Assay type using SYBR Green 1 dye or TaqMan Probe-based chemistry

Chemistry	Assay Type		
	Quantification (Chapter 3)	Allelic Discrimination (Chapter 4)	Plus/Minus using an IPC (Chapter 5)
	Yes	No	No
TaqMan probes	Yes	Yes	Yes

a. Includes one-step reverse transcription polymerase chain reaction (RT-PCR) and two-step RT-PCR for RNA quantification and DNA/cDNA quantification

Table 2-3 Chemistry considerations for quantification assays using SYBR Green 1 dye or TaqMan Probe-based chemistry

Chemistry	Advantage	Limitation
SYBR Green I	- Provides amplification of any double-stranded DNA sequence - Dissociation curves yield melting profile of distinct PCR products; allows melt curves to be added on the run - Increases sensitivity for detecting amplification products relative to product length - Provides a convenient and cost effective real-time chemistry to screen many samples and targets	- Can bind to nonspecific double-stranded DNA sequences. To avoid false positive signals, check for nonspecific product formation using dissociation curve or gel analysis - Multiplex reactions are not supported - Optimized assays are not available
TaqMan probe	- Increases specificity with a probe - Provides multiplex capability; allows for labeling probes with different, distinguishable reporter dyes, which allows detection of two distinct sequences in one reaction tube - Optimized assays available - Allows 5^{\prime} nuclease assay to be carried out during PCR	- Requires synthesis of a unique probe

Minimizing DNA Contaminants

The DNA amplification capability of the PCR process makes special laboratory practices necessary when performing assays using fluorogenic 5^{\prime} nuclease (TaqMan Probe-based chemistry) or SYBR Green I dye chemistry. Potential contamination can be introduced by samples with high DNA concentrations, either from the DNA template controls or from PCR carryover.

In addition, due to the nonspecific nature of the SYBR Green I dye, any doublestranded DNA will be detected. When using the SYBR Green I dye chemistry, check for nonspecific product formation by using dissociation curve or gel analysis. Care must be taken to avoid contamination with target DNA. Gene expression assays that span exon-exon junctions minimize the effect of gDNA (genomic DNA) contaminants.

Using UNG to Minimize
 Reamplification Carryover Products

AmpErase ${ }^{\circledR}$ uracil-N-glycosylase (UNG) is a $26-\mathrm{kDa}$ recombinant enzyme encoded by the Escherichia coli uracil-N-glycosylase gene. This gene has been inserted into an E. coli host to direct expression of the native form of the enzyme (Kwok and Higuchi, 1989).
UNG acts on single- and double-stranded dU-containing DNA. It acts by hydrolyzing uracil-glycosidic bonds at dU-containing DNA sites. The enzyme causes the release of uracil, thereby creating an alkali-sensitive apyrimidic site in the DNA. The enzyme has no activity on RNA or dT-containing DNA (Longo et al., 1990).

TaqMan ${ }^{\circledR}$ Assays

For 5^{\prime} nuclease assays (which use either the TaqMan ${ }^{\circledR} 2 \times$ Universal PCR Master Mix or the TaqMan ${ }^{\circledR}$ Fast Universal PCR Master Mix (2X), No AmpErase ${ }^{\circledR}$ UNG), AmpErase UNG treatment can prevent the re-amplification of carryover PCR products. When dUTP replaces dTTP in PCR amplification, AmpErase UNG treatment can remove up to 200,000 copies of amplicon per $50-\mu \mathrm{L}$ reaction.

Note: TaqMan $2 \times$ Universal PCR Master Mix is available with or without AmpErase UNG. If you are using TaqMan Fast Universal PCR Master Mix (2X), No AmpErase UNG, you must purchase AmpErase UNG separately.

SYBR Green I Dye Assays

AmpErase UNG treatment can also be useful in preventing the re-amplification of carryover PCR products in SYBR Green I dye assays. Although the SYBR Green PCR Master Mix does not contain AmpErase UNG, dTTP has been replaced with dUTP, thus making the SYBR Green PCR Master Mix compatible with the use of AmpErase UNG. If contamination from PCR carryover is suspected, use AmpErase UNG to troubleshoot the problem.

Note: AmpErase UNG can be purchased individually (PN N808-0096) or as part of the SYBR Green PCR Core Reagents kit (PN 4304886).

General PCR Use the following precautions to minimize sample contamination and PCR product Practices carryover:

- Wear a clean lab coat (not previously worn while handling amplified PCR products or used during sample preparation) and clean gloves when preparing samples for PCR amplification. Change gloves whenever you suspect that they are contaminated.
- Maintain separate areas, dedicated equipment, and supplies for:
- Sample preparation.
- PCR setup. Never bring amplified PCR products into the PCR setup area.
- PCR amplification.
- Analysis of PCR products.
- Open and close all sample tubes carefully. Avoid splashing or spraying PCR samples.
- Use positive-displacement or air-displacement pipettors with filter-plugged tips. Change tips after each use.
- Keep reactions and components capped as much as possible.
- Clean lab benches and equipment periodically with 10% bleach solution or 70% ethanol.

Gene Expression and Other Quantitative Assays

Section 3.1 Introduction 3-3
About Quantification Assays 3-4
Selecting a Quantification Assay Chemistry 3-6
Purchasing a Preformulated or Custom-Designed Quantification Assay 3-7
TaqMan Gene Expression Assays 3-7
Custom TaqMan Gene Expression Assays 3-9
Designing Your Own Quantification Assay 3-10
Primer and Probe Design Using Primer Express Software 3-11
Selecting the Appropriate Reagent Configuration 3-14
Using the Universal Thermal Cycling Parameters 3-16
Optimizing Primer Concentrations 3-21
Optimizing the Probe Concentration 3-24
Using Multiplex PCR 3-27
Section 3.2 Selecting a Data Analysis Approach and Determining Results 3-31
Data Analysis 3-32
Relative or Absolute Quantification 3-32
Relative Standard Curve Method for Quantification 3-36
Comparative CT Method for Relative Quantification 3-42
Comparative CT Method for Relative Quantification 3-45
Standard Curve Method for Absolute Quantification 3-53

Section 3.1 Introduction

In This Section This section covers:
About Quantification Assays . 3-4
Selecting a Quantification Assay Chemistry. 3-6
Purchasing a Preformulated or Custom-Designed Quantification Assay 3-7
TaqMan Gene Expression Assays . 3-7
Custom TaqMan Gene Expression Assays . 3-9
Designing Your Own Quantification Assay . 3-10
Primer and Probe Design Using Primer Express Software 3-11
Selecting the Appropriate Reagent Configuration 3-14
Using the Universal Thermal Cycling Parameters 3-16
Optimizing Primer Concentrations . 3-21
Optimizing the Probe Concentration. 3-24
Using Multiplex PCR . 3-27

About Quantification Assays

What Is a Quantification Assay?

A quantification assay is a real-time PCR assay that measures the amount of a nucleic acid target during each amplification cycle of the PCR. The target can be DNA, cDNA, or RNA.

Three types of quantification assays are discussed in this chemistry guide:

- DNA/cDNA quantification
- RNA quantification using one-step reverse transcription polymerase chain reaction (RT-PCR)
- RNA quantification using two-step RT-PCR

Note: For more information on one-step and two-step RT-PCR, see "About RealTime PCR Assays" on page 1-4.

Instruments
Quantification Assays can be used with the following instruments:

- Applied Biosystems 7900HT Fast Real-Time PCR System (7900HT System)
- ABI Prism ${ }^{\circledR} 7900 \mathrm{HT}$ Sequence Detection System, upgradeable to the Applied Biosystems 7900HT Fast Real-Time PCR System with the 7900HT System Fast Service Upgrade
- Applied Biosystems 7300 Real-Time PCR System (7300 System)
- Applied Biosystems 7500 Real-Time PCR System (7500 System), upgradeable to the Applied Biosystems 7500 Fast Real-Time PCR System with the 7500 Fast Real-Time PCR Upgrade Kit
- Applied Biosystems 7500 Fast Real-Time PCR System (7500 Fast System)

Terms Used in Quantification Analysis

Table 3-1 Terms used in quantification analysis

Term	Definition
Amplicon	A short segment of DNA amplified during PCR.
Amplification plot	The graphical display of fluorescence signal versus cycle number.
Baseline	The initial cycles of PCR, in which there is little change in fluorescence signal.
Threshold	A level of delta R_{r} that is automatically determined by the Sequence Detection Systems software or manually set and that is used for C_{T} determination in real-time assays. The level is set to be above the baseline and sufficiently low to be within the exponential growth region of the amplification curve. The threshold is the line whose intersection with the Amplification plot defines the C_{T}.
Threshold cycle $\left(\mathrm{C}_{T}\right)$	The fractional cycle number at which the fluorescence passes the threshold.
Calibrator	A sample used as the basis for comparative results.

Table 3-1 Terms used in quantification analysis (continued)

Term	\quad Definition
Endogenous control	Internal control gene present in each experimental sample. By using an endogenous control as an active reference, you can normalize quantification of a messenger RNA (mRNA) target for differences in the amount of total RNA added to each reaction.
Intron	A non-coding segment of a gene.
No template control (NTC)	A sample that does not contain template. It is used to verify amplification quality.
Nucleic acid target (also called "target template")	Nucleotide sequence that you want to detect or quantify.
Passive reference	A dye that provides an internal fluorescence reference to which the reporter dye signal can be normalized during data analysis. Normalization is necessary to correct for fluorescent fluctuations caused by changes in concentration or volume. A passive reference dye is included in all real-time PCR reagent kits.
Reporter dye	The dye attached to the 5' end of a TaqMan ${ }^{\text {® }}$ probe. The dye provides a signal that is an indicator of specific amplification.
Unknown sample Normalized reporter (Ren	The ratio of the fluorescence emission intensity of the reporter dye to the fluorescence emission intensity of the passive reference dye.
A sample containing an unknown quantity of template that you	
want to characterize.	

Figure 3-1 shows a representative amplification plot and includes some of the terms defined above.

Figure 3-1 Model of a single-sample amplification plot, showing terms commonly used in quantitative analysis

How Real-Time PCR Quantification Assays Work

Real-time PCR allows reactions to be characterized by the point in time during cycling when amplification of a PCR product achieves a fixed level of fluorescence, rather than the amount of PCR product accumulated after a fixed number of cycles.
An amplification plot graphically displays the fluorescence detected over the number of cycles that were performed.
As shown in Figure 3-1, in the initial cycles of PCR, there is no significant change in fluorescence signal. This predefined range of PCR cycles is called the "baseline". First, the software generates a baseline subtracted amplification plot by calculating a mathematical trend using Rn values corresponding to the baseline cycles. Then, an algorithm searches for the point on the amplification plot at which the delta Rn value crosses the threshold. The fractional cycle at which this occurs is defined as the C_{T}.

Selecting a Quantification Assay Chemistry

Chemistries
Quantification assays can be used with the following chemistries:

- TaqMan ${ }^{\circledR}$ Probe-based fluorogenic 5^{\prime} nuclease chemistry
- SYBR $^{\circledR}$ Green I dye chemistry

Both TaqMan Probe-based and SYBR Green I dye chemistries can be used for either one-step or two-step RT-PCR.

Primers Used for cDNA Synthesis in One-Step RT-PCR

For one-step RT-PCR, sequence-specific reverse primers can be used for cDNA synthesis.
Note: Although one-step RT-PCR offers the convenience of a single-tube preparation for RT and PCR amplification, AmpErase ${ }^{\circledR}$ UNG cannot be used with this method.

Primers Used for cDNA Synthesis in Two-Step RT-PCR

For two-step RT-PCR, the following primers can be used for cDNA synthesis:

- Oligo d(T) ${ }_{16}$
- Random hexamers
- Sequence-specific reverse primers

The choice of primers for reverse transcription is best made after experimentally evaluating all three priming systems. For short RNA sequences containing no hairpin loops, any of the three priming systems works equally well. For longer RNA transcripts or sequences containing hairpin loops, consider the guidelines in Table 3-2.

Table 3-2 Priming systems for RT-PCR

Primers	Selection Guidelines
Oligo $\mathrm{d}\left(\mathrm{T}_{16}\right.$	- Use to reverse transcribe only eukaryotic mRNAs and - retroviruses with poly-A tails Avoid long mRNA transcripts or amplicons greater than 2 kilobases upstream
Random primers	- Try first for use with long reverse transcripts or reverse transcripts containing hairpin loops
- Use to transcribe all RNA (rRNA, mRNA, and tRNA)	

Purchasing a Preformulated or Custom-Designed Quantification Assay

TaqMan Gene Expression Assays

Product TaqMan ${ }^{\circledR}$ Gene Expression Assays are a comprehensive collection of predesigned Description primer and probe sets, which help researchers quickly and easily perform quantitative gene expression studies on human, mouse, rat, Arabidopsis, and Drosophila genes.

Product Properties

TaqMan Gene Expression Assays are built on Applied Biosystems 5' nuclease chemistry. Each assay consists of two unlabeled PCR primers and a FAM ${ }^{\text {TM }}$ dyelabeled TaqMan ${ }^{\circledR}$ MGB (minor groove binder) probe. All components are quality control-tested and formulated as a single $20 \times$ mix.

TaqMan Gene Expression Assays are designed to

- Run under universal conditions for two-step RT-PCR.
- Work with either of two master mixes: TaqMan ${ }^{\circledR} 2 \times$ Universal PCR Master Mix (with or without AmpErase ${ }^{\circledR}$ UNG) or TaqMan ${ }^{\circledR}$ Fast Universal PCR Master Mix (2X), No AmpErase ${ }^{\circledR}$ UNG.

Note: The TaqMan Fast Universal PCR Master Mix (2×), No AmpErase UNG, is supported only in the 7500 Fast System and Fast-capable 7900HT Systems. The Fast-capable 7900HT Systems are the Applied Biosystems 7900HT Fast Real-Time PCR System or the ABI Prism ${ }^{\circledR} 7900$ HT Sequence Detection System upgraded to an Applied Biosystems 7900HT Fast Real-Time PCR System with the 7900HT System Fast Service Upgrade.

- Amplify target cDNA without amplifying genomic DNA (m suffix in assay ID), when possible. This is achieved by designing probes that cross exon-exon junctions.

Available TaqMan Gene Expression Assays

TaqMan Gene Expression Assays (PNs 4331182 and 4351372) are available for human, mouse, rat, Arabidopsis, and Drosophila genes. Additionally, a number of TaqMan ${ }^{\circledR}$ Endogenous Controls are available for all species, with either VIC ${ }^{\circledR}$ dyelabeled or FAM ${ }^{\text {M }}$ dye-labeled TaqMan ${ }^{\circledR}$ MGB probes. TaqMan Endogenous Controls with VIC dye labels are primer-limited.
The prefix of the assay name indicates the species for which the assay was designed: Hs for Homo sapiens (human), Mm for Mus musculus (mouse), Rn for Rattus norvegicus (rat), At for Arabidopsis thaliana, and Dm for Drosophila melanogaster.

The suffix of the assay name indicates the assay placement, as described in the table below.

Suffix	Description
$_m$	The assay's probe spans an exon junction and will not detect genomic DNA.
$_s$	The assay's primers and probes are designed within a single exon and will detect genomic DNA.
$-g$	The assay may detect genomic DNA.
$_m H$	The assay was designed to a transcript belonging to a gene family with high sequence homology. The assay provides between $10 \mathrm{C}_{\mathrm{T}}$ and $15 \mathrm{C}_{\mathrm{T}}$ difference between the target gene and the gene witht the closest sequence homology. This means the assay will detect the target transcript with $1000-$ to 3000 -fold greater discrimination (sensitivity) than the closest homologous transcript, if they are present at the same copy number in a sample.
$_$sh	

Note: TaqMan Gene Expression Assays labeled with Hs999999xx_yy are converted TaqMan ${ }^{\circledR}$ Pre-Developed Assay Reagents (PDAR) designs; these do not follow the same design rules listed above.

The latest information on available products and specific product uses can be found on the Applied Biosystems Web site:

http://www.allgenes.com

Custom TaqMan Gene Expression Assays

Product If a particular gene expression primer and probe set of interest is not available as a Description product on the Applied Biosystems Web site, you can use our Custom TaqMan ${ }^{\circledR}$ Gene Expression Assay Service to submit sequences for any species, gene, or splice variant. See "Custom TaqMan SNP Genotyping and Gene Expression Assays" on page 1-7 for additional details on Custom TaqMan ${ }^{\circledR}$ Assays. More information about Custom TaqMan Gene Expression Assays and related products, part numbers, and free software is also available at:
http://www.allgenes.com
To place an order, contact your Applied Biosystems representative.
Product Properties

Each Custom TaqMan Gene Expression Assay is manufactured based solely on the customer's input target sequence. All information supplied by the customer and returned by Applied Biosystems to the customer is considered confidential and is treated accordingly. Visit the Applied Biosystems support web site to access tutorials on how to submit sequences to the Custom TaqMan ${ }^{\circledR}$ Gene Expression Assay Service. See "How to Obtain Support" on page ix.

Designing Your Own Quantification Assay

This section discusses the Applied Biosystems assay design guidelines that contain the following important steps:

- Designing primers and probes using Primer Express ${ }^{\circledR}$ software
- Selecting the appropriate reagent configuration (TaqMan ${ }^{\circledR}$ Universal PCR Master Mix or SYBR ${ }^{\circledR}$ Green PCR Master Mix)
- Using universal thermal cycling parameters
- Using default primer and probe concentrations (or optimizing, if necessary)

IMPORTANT! These steps provide a rapid and reliable system for assay design and optimization only when used in their entirety. The system must be adopted as a whole in order to achieve the highest level of success, due to the interdependence of many of the individual components.

Conclusions The Applied Biosystems Assay Design Guidelines enable Quantitative Assays to be designed and optimized rapidly and efficiently. Since thousands of assays have been developed this way, the following conclusions can be made.

- For the vast majority of 5^{\prime} nuclease quantification assays designed and run following these guidelines, using a concentration of $900-\mathrm{nM}$ primers and $250-\mathrm{nM}$ probe provides for a highly reproducible and sensitive assay when using DNA or cDNA as a template.
- Due to the nonspecific nature of its detection, SYBR Green I dye primer optimization should be bypassed only with caution. However, if all guidelines are followed, concentrations of $50-\mathrm{nM}$ forward and reverse primer should provide robust amplification with a good level of specificity when using DNA or cDNA as a template. This assumption should, however, always be verified by checking for nonspecific product formation with either dissociation curve or gel analysis.
- As a general rule, a 5^{\prime} nuclease quantification assay should enable detection and accurate quantification down to less than 50 copies of a target sequence, with even greater sensitivity possible.
- A SYBR Green I dye Quantification Assay is capable of similar performance; however, nonspecific product formation can potentially increase the minimum detection limit.

Primer and Probe Design Using Primer Express Software

The Primer Express ${ }^{\circledR}$ software uses recommended parameters to select primers and probes based on the DNA sequence that you provide.

If you are designing your own assay, follow the summary of the primer and probe design guidelines for Quantitative Assays shown in Table 3-3 on page 3-13. For a detailed discussion of these guidelines see "About the Primer and Probe Design Guidelines" below.

Note: Even though a probe is not required for SYBR Green I dye detection, it is still a good idea to use Primer Express software to select a primer and probe set when designing a SYBR Green I dye assay. Although no probe will be used, the primers will meet all the required criteria and if, in the future, there is the need to convert the assay to 5^{\prime} nuclease assay chemistry to obtain higher specificity, the probe can immediately be found in the original Primer Express software document.

Selecting an Amplicon Site for Gene Expression Assays

Selecting a good amplicon site ensures amplification of the target mRNA/cDNA without co-amplifying the genomic sequence, pseudogenes, and other related genes. SYBR Green I dye chemistry can be useful for screening amplicon sites for gene expression.

Guidelines

- The amplicon should span one or more introns to avoid amplification of the target gene in genomic DNA.
- The primer pair should be specific to the target gene to avoid amplification of pseudogenes or other related genes.
- When designing primers, use Primer Express software guidelines.
- If no good sequence is found, it may be necessary to examine the sequence and redesign the amplicon or simply screen for more sites.

If the gene you are studying does not have introns, then it is not possible to design an amplicon that will amplify the mRNA sequence without amplifying the gene sequence. In this case, it is necessary to run RT minus controls.

About the Primer and Probe Design Guidelines

Selection of Small Amplicons

An important default parameter in Primer Express software is the selection of amplicons in the 50 - to 150 -base pair range. Small amplicons are favored because they promote high-efficiency amplification.

In addition, high-efficiency assays enable relative quantification to be performed using the comparative C_{T} method ($\Delta \Delta \mathrm{C}_{\mathrm{T}}$) (Livak and Schmittgen, 2001). This method increases sample throughput by eliminating the need for standard curves when looking at expression levels of a target relative to a calibrator sample. (For more information on the comparative C_{T} method, see page 3-40.)

G/C Content

Whenever possible, primers and probes should be selected in a region with a G/C content of 30 to 80%. Regions with a G/C content in excess of this may not denature well during thermal cycling, leading to a less efficient reaction. In addition, G/C-rich sequences are susceptible to nonspecific interactions that may reduce reaction efficiency and produce nonspecific signal in SYBR Green I dye assays. For this same reason, primer and probe sequences containing runs of four or more G bases should be avoided.

Melting Temperature

Selecting primers and probes with the recommended melting temperature $\left(\mathrm{T}_{\mathrm{m}}\right)$ allows the use of universal thermal cycling parameters. Having the probe T_{m} be $10^{\circ} \mathrm{C}$ higher than that of the primers is recommended.

5' End of Probes

Primer Express software does not select probes with a G on the 5^{\prime} end. The quenching effect of a G base in this position will be present even after probe cleavage. This can result in reduced fluorescence values ($\Delta \mathrm{R}_{\mathrm{n}}$, see Table 3-1 on page 3-4), which can impact the performance of an assay. Having G bases in positions close to the 5^{\prime} end, but not on it, has not been shown to compromise assay performance.

3^{\prime} End of Primers

The last five bases on the 3^{\prime} end of the primers should contain no more than two C and/or G bases, which is another factor that reduces the possibility of nonspecific product formation. Under certain circumstances, such as a G/C-rich template sequence, this recommendation may have to be relaxed to keep the amplicon under 150 basepairs in length. In general, avoid primer 3^{\prime} ends extremely rich in G and/or C bases.

Summary of

Primer and MGB Probe Design Guidelines

Table 3-3 Primer and probe design guidelines for quantitative assays

Probe Guidelines	Primer Guidelines
Select the probe first, then design the primers as close as possible to the probe without overlapping the probe (amplicons of 50 to 150 basepairs are strongly recommended).	
Keentent in the 30 to 80% range. Avoid runs of an identical nucleotide, especially guanine, where runs of four or more Gs should be avoided. When using Primer Express software, the T_{m} should be 68 to $70^{\circ} \mathrm{C}$. No G on the 5^{\prime} end.When using Primer Express software, the T_{m} should be 58 to $60^{\circ} \mathrm{C}$.	
Make TaqMan MGB probes as short as possible without being shorter than 13 nucleotides.	The five nucleotides at the 3^{\prime} end should have no more than two G and/or C bases.

Selecting the Appropriate Reagent Configuration

Several TaqMan ${ }^{\circledR}$ Probe-based and SYBR ${ }^{\circledR}$ Green I dye chemistry kits are available for quantitative assays. The reagent configuration you use depends on your assay type (Table 3-4, Table 3-5, Table 3-6).

Recommended Reagent Configurations

Note: See Appendix B for a list of available kit sizes.
Table 3-4 Reagents available for DNA and cDNA quantification assays

Chemistry	Reagent Configuration	Part Number
TaqMan probes	TaqMan Fast Universal PCR Master Mix (2X), No AmpErase ${ }^{\circledR}$ UNG, 250 Reactions ${ }^{\text {a }}$	4352042
	TaqMan 2× Universal PCR Master Mix, 200 Reactions	4304437
	TaqMan 2X Universal PCR Master Mix, 2000 Reactions	4326708
	10-Pack, TaqMan $2 \times$ Universal PCR Master Mix	4305719
	TaqMan $2 \times$ Universal PCR Master Mix, No AmpErase UNG, 200 Reactions	4324018
	TaqMan $2 \times$ Universal PCR Master Mix, No AmpErase UNG, 2000 Reactions	4326614
	10-Pack, TaqMan $2 \times$ Universal PCR Master Mix, No AmpErase UNG	4324020
	TaqMan PCR Core Reagents Kit, 200 Reactions	N808-0228
SYBR Green I dye	SYBR Green PCR Master Mix, 200 reactions	4309155
	SYBR Green PCR Master Mix, 50-mL (2000 reactions)	4334973
	SYBR Green PCR Master Mix, 1-mL (40 reactions)	4344463
	SYBR Green PCR Core Reagents, 200 Reactions	4304886

a. The TaqMan Fast Universal PCR Master Mix (2X), No AmpErase UNG, can be used with the 7500 Fast System, the 7500 System upgraded to a 7500 Fast System, and with Fastcapable 7900HT Systems (the Applied Biosystems 7900HT Fast Real-Time PCR System or the ABI PrIsm ${ }^{\circledR}$ 7900HT Sequence Detection System upgraded to an Applied Biosystems 7900HT Fast Real-Time PCR System with the 7900HT System Fast Service Upgrade).

RNA Quantification Using One-Step RT-PCR
Table 3-5 Reagents available for RNA quantification assays using one-step RT-PCR

Chemistry	Reagent Configuration	Part Number
TaqMan probes	TaqMan One-Step RT-PCR Master Mix Reagents Kit	4309169
	TaqMan Gold RT-PCR Kit (without controls)	N808-0232
	TaqMan EZ RT-PCR Core Reagents Note: Use this configuration when a high- temperature RT step is required.	N808-0236
	SYBR Green RT-PCR Reagents	4310179

RNA Quantification Using Two-Step RT-PCR

Table 3-6 Reagents available for RNA quantification assays using two-step RT-PCR

Chemistry	Step	Reagent Configuration	Part Number
TaqMan probes	PCR step only	TaqMan $2 \times$ Universal PCR Master Mix	4304437
		TaqMan Fast Universal PCR Master Mix (2X), No AmpErase UNG ${ }^{\text {a }}$	4352042
	RT step only	TaqMan Reverse Transcription Reagents	N808-0234
		High-Capacity cDNA Archive Kit	4322171
	Both RT and PCR steps	TaqMan Gold RT PCR kit	N808-0232
		TaqMan EZ RT-PCR Core Reagents Without Controls	N808-0236
		TaqMan EZ-RT-PCR Core Reagents, 10-pack	403028
SYBR Green I dye	PCR step only	SYBR Green Master Mix	4309155
	Both RT and PCR steps	SYBR Green RT-PCR Reagents	4310179

a. The TaqMan Fast Universal PCR Master Mix (2X), No AmpErase UNG, can be used with the 7500 Fast System, the 7500 System upgraded to a 7500 Fast System, and with Fastcapable 7900HT Systems (the Applied Biosystems 7900HT Fast Real-Time PCR System or the ABI PrISM ${ }^{\circledR} 7900$ HT Sequence Detection System upgraded to an Applied Biosystems 7900HT Fast Real-Time PCR System with the 7900HT System Fast Service Upgrade).

About Master Mix Reagents

TaqMan $2 \times$ Universal PCR Master Mix

The TaqMan $2 \times$ Universal PCR Master Mix is designed to provide optimal
performance for 5^{\prime} nuclease assays that use cDNA or DNA as a template. This product contains components that ensure excellent assay performance even when demanding G/C-rich target sequences are encountered. The use of one reagent for all assays simplifies the process of assay implementation.

TaqMan Fast Universal PCR Master Mix (2X), No AmpErase UNG

Use the TaqMan Fast Universal PCR Master Mix ($2 \times$), No AmpErase UNG, to run gene expression assays on the Applied Biosystems 7900HT Fast Real-Time PCR System in about 35 minutes and on the Applied Biosystems 7500 Fast Real-Time PCR System in about 40 minutes.

SYBR Green I PCR Master Mix

The SYBR Green PCR Master Mix is a convenient premix for real-time PCR using the SYBR Green I dye. Direct detection of the PCR product is monitored by measuring the increase in fluorescence that is caused by the SYBR Green I dye binding to double-stranded DNA.

Note: You cannot use SYBR Green I dye with the TaqMan Fast Universal PCR Master Mix ($2 \times$), No AmpErase UNG.

About the

AmpliTaq Gold DNA Polymerase
Reagent
The use of the hot-start enzyme AmpliTaq Gold ${ }^{\circledR}$ DNA Polymerase is an integral part of Applied Biosystems assay design guidelines for both TaqMan Probe-based and SYBR Green I dye chemistries. The use of AmpliTaq Gold DNA Polymerase ensures a robust reaction and can dramatically reduce the amount of nonspecific product formation. A further benefit is the simplification of assay setup, which can be performed at room temperature.

Note: The DNA polymerase system included in the TaqMan Fast Universal PCR Master Mix (2×), No AmpErase UNG, is capable of instant hot-start PCR and does not require an activation step. The performance is similar to that of the AmpliTaq Gold DNA Polymerase.

MultiScribe Reverse Transcriptase

MultiScribe ${ }^{\text {TM }}$ Reverse Transcriptase is a recombinant Moloney Murine Leukemia Virus (MuLV) Reverse Transcriptase.

Using the Universal Thermal Cycling Parameters

All quantitative assays designed using Applied Biosystems assay design guidelines can be run using the universal thermal cycling parameters. This protocol design eliminates any optimization of the thermal cycling parameters and means that multiple assays can be run on the same plate without sacrificing performance. This benefit is critical when combining two assays into a multiplex 5^{\prime} nuclease assay system.

Recommended
Thermal Cycling
Parameters

DNA/cDNA Quantification

The thermal cycling parameters listed in Table 3-7 are recommended for DNA and cDNA Quantification Assays. The parameters apply to both TaqMan Probe-based and SYBR Green I dye chemistries.

Table 3-7 Thermal cycling parameters for DNA and cDNA quantification assays using TaqMan $2 \times$ Universal PCR Master Mix

Times and Temperatures				
Initial Steps		PCR (40 Cycles)		
AmpErase UNG Activation	AmpliTaq Gold DNA Polymerase Activation	Melt	Anneal/Extend	
HOLD	HOLD	CYCLE		
$2 \min @ 50^{\circ} \mathrm{C}$	$10 \min @ 95^{\circ} \mathrm{C}$	$15 \mathrm{sec} @ 95^{\circ} \mathrm{C}$	$1 \mathrm{~min} @ 60^{\circ} \mathrm{C}$	

Table 3-8 Thermal cycling parameters for DNA and cDNA quantification assays using TaqMan Fast Universal PCR Master Mix (2X), No AmpErase UNG for the 7900HT Fast System

Times and Temperatures			
Initial Steps		PCR (40 Cycles)	
AmpErase UNG Activation			
HOLD	Denature	Melt	Anneal/Extend
$2 \min @ 50^{\circ} \mathrm{C}$	$20 \sec @ 95^{\circ} \mathrm{C}$	$1 \sec @ 95^{\circ} \mathrm{C}$	$20 \sec @ 60^{\circ} \mathrm{C}$

a. Required only if AmpErase UNG is added to the reactions.

Table 3-9 Thermal cycling parameters for DNA and cDNA quantification assays using TaqMan Fast Universal PCR Master Mix (2×), No AmpErase UNG for the 7500 Fast System

Times and Temperatures			
Initial Steps		PCR (40 Cycles)	
AmpErase UNG Activation	Denature	Melt	Anneal/Extend
HOLD	HOLD	CYCLE	
$2 \min @ 50^{\circ} \mathrm{C}$	$20 \sec @ 95^{\circ} \mathrm{C}$	$3 \sec @ 95^{\circ} \mathrm{C}$	$30 \sec @ 60^{\circ} \mathrm{C}$

a. Required only if AmpErase UNG is added to the reactions.

RNA Quantification Using One-Step RT-PCR

The thermal cycling parameters listed in Table 3-10 are recommended for RNA quantification assays using one-step RT-PCR. The parameters apply to both TaqMan Probe-based and SYBR Green I dye chemistries.

Table 3-10 Thermal cycling parameters for RNA quantification assays using one-step RT-PCR

Times and Temperatures $^{\text {a }}$			
Initial Steps		PCR (40 Cycles)	
Reverse Transcription	AmpliTaq Gold DNA Polymerase Activation	Melt	Anneal/Extend
HOLD	HOLD	40 CYCLES	
$30 \min @ 48^{\circ} \mathrm{C}$	$10 \min @ 95{ }^{\circ} \mathrm{C}$	$15 \sec @ 95^{\circ} \mathrm{C}$	$1 \mathrm{~min} @ 60^{\circ} \mathrm{C}$

a. Not applicable for the TaqMan EZ RT-PCR Kit Protocol. See the TaqMan EZ RT-PCR Kit Protocol for the appropriate values.

RNA Quantification Using Two-Step RT-PCR

The thermal cycling parameters listed in Tables 3-11 through 3-14 are recommended for RNA quantification assays using two-step RT-PCR. The parameters apply to both TaqMan Probe-based and SYBR Green I dye chemistries.

Table 3-11 Thermal cycling parameters for RNA quantification assays using two-step RT-PCR on the 7900HT System

Step	Times and Temperatures			
1. RT Step	HOLD ${ }^{\text {a }}$	HOLD	HOLD	-
	10 min @ $25^{\circ} \mathrm{C}$	$30 \mathrm{~min} @ 48^{\circ} \mathrm{C}$	$5 \mathrm{~min} @ 95^{\circ} \mathrm{C}$	
2. PCR Step Using TaqMan $2 \times$ Universal PCR Master Mix	Initial Steps		PCR (40 Cycles)	
	AmpErase UNG Activation	AmpliTaq Gold DNA Polymerase Activation	Melt	Anneal/ Extend
	HOLD	HOLD	CYCLE	
	$2 \mathrm{~min} @ 50^{\circ} \mathrm{C}$	10 min @ $95{ }^{\circ} \mathrm{C}$	$15 \mathrm{sec} @ 95^{\circ} \mathrm{C}$	$1 \mathrm{~min} @ 60^{\circ} \mathrm{C}$
2. PCR Step Using TaqMan Fast Universal PCR Master Mix (2×), No AmpErase UNG	Initial Steps		PCR (40 Cycles)	
	AmpErase UNG Activation ${ }^{\text {b }}$	Denature	Melt	Anneal/ Extend
	HOLD	HOLD	CYCLE	
	2 min @ $50{ }^{\circ} \mathrm{C}$	$20 \mathrm{sec} @ 95^{\circ} \mathrm{C}$	$1 \mathrm{sec} @ 95^{\circ} \mathrm{C}$	$20 \mathrm{sec} @ 60^{\circ} \mathrm{C}$

a. This step is required for random hexamers or oligod(T). It is not necessary when using sequence-specific primers.
b. Required only if AmpErase UNG is added to the reactions.

Table 3-12 Thermal cycling parameters for RNA quantification assays using two-step RT-PCR on the 7500 Fast System

Step	Times and Temperatures			
1. RT Step	HOLD ${ }^{\text {a }}$	HOLD	HOLD	-
	10 min @ $25^{\circ} \mathrm{C}$	$30 \mathrm{~min} @ 48^{\circ} \mathrm{C}$	$5 \mathrm{~min} @ 95{ }^{\circ} \mathrm{C}$	
2. PCR Step Using TaqMan $2 \times$ Universal PCR Master Mix	Initial Steps		PCR (40 Cycles)	
	AmpErase UNG Activation	AmpliTaq Gold DNA Polymerase Activation	Melt	Anneal/ Extend
	HOLD	HOLD		
	$2 \mathrm{~min} @ 50^{\circ} \mathrm{C}$	10 min @ $95^{\circ} \mathrm{C}$	$15 \mathrm{sec} @ 95^{\circ} \mathrm{C}$	$1 \mathrm{~min} @ 60^{\circ} \mathrm{C}$

Table 3-12 Thermal cycling parameters for RNA quantification assays using two-step RT-PCR on the 7500 Fast System (continued)

Step	Times and Temperatures			
2. PCR Step	Initial Steps		PCR (40 Cycles)	
TaqMan Fast Universal PCR Master	AmpErase UNG Activation ${ }^{\text {b }}$	Denature	Melt	Anneal/ Extend
Mix (2×), No	HOLD	HOLD	CYCLE	
UNG	2 min @ $50^{\circ} \mathrm{C}$	$20 \sec @ 95^{\circ} \mathrm{C}$	$3 \mathrm{sec} @ 95^{\circ} \mathrm{C}$	$30 \sec @ 60^{\circ} \mathrm{C}$

a. This step is required for random hexamers or oligod(T). It is not necessary when using sequence-specific primers.
b. Required only if AmpErase UNG is added to the reactions.

Table 3-13 Thermal cycling parameters for RNA Quantification assays using the high-capacity cDNA archive kit when using two-step RT-PCR on the 7900HT System

Step	Times and Temperatures			
1. RT Step	HOLD		HOLD	
	Step 1		Step 2	
	$10 \mathrm{~min} @ 25^{\circ} \mathrm{C}$		120 min @ $37^{\circ} \mathrm{C}$	
2. PCR Step Using TaqMan $2 \times$ Universal PCR Master Mix	Initial Steps		PCR (40 Cycles)	
	AmpErase UNG Activation	AmpliTaq Gold DNA Polymerase Activation	Melt	Anneal/ Extend
	HOLD	HOLD	CYCLE	
	$2 \mathrm{~min} @ 50^{\circ} \mathrm{C}$	10 min @ $95^{\circ} \mathrm{C}$	$15 \mathrm{sec} @ 95^{\circ} \mathrm{C}$	$1 \mathrm{~min} @ 60^{\circ} \mathrm{C}$
2. PCR Step Using TaqMan Fast Universal PCR Master Mix (2X), No AmpErase UNG	Initial Steps		PCR (40 Cycles)	
	AmpErase UNG Activation ${ }^{\text {a }}$	Denature	Melt	Anneal/ Extend
	HOLD	HOLD		
	$2 \mathrm{~min} @ 50^{\circ} \mathrm{C}$	$20 \mathrm{sec} @ 95^{\circ} \mathrm{C}$	$1 \mathrm{sec} @ 95^{\circ} \mathrm{C}$	$20 \mathrm{sec} @ 60^{\circ} \mathrm{C}$

a. Required only if AmpErase UNG is added to the reactions.

Table 3-14 Thermal cycling parameters for RNA Quantification assays using the high-capacity cDNA archive kit when using two-step RT-PCR on the 7500 Fast System

Step	Times and Temperatures			
1. RT Step	HOLD		HOLD	
	Step 1		Step 2	
	$10 \mathrm{~min} @ 25^{\circ} \mathrm{C}$		120 min @ $37^{\circ} \mathrm{C}$	
2. PCR Step Using TaqMan $2 \times$ Universal PCR Master Mix	Initial Steps		PCR (40 Cycles)	
	AmpErase UNG Activation	AmpliTaq Gold DNA Polymerase Activation	Melt	Anneal/ Extend
	HOLD	HOLD	CYCLE	
	$2 \mathrm{~min} @ 50^{\circ} \mathrm{C}$	10 min @ $95^{\circ} \mathrm{C}$	$15 \mathrm{sec} @ 95^{\circ} \mathrm{C}$	$1 \mathrm{~min} @ 60^{\circ} \mathrm{C}$
2. PCR Step Using TaqMan Fast Universal PCR Master Mix (2×), No AmpErase UNG	Initial Steps		PCR (40 Cycles)	
	AmpErase UNG Activation ${ }^{2}$	Denature	Melt	Anneal/ Extend
	HOLD	HOLD		
	$2 \mathrm{~min} @ 50^{\circ} \mathrm{C}$	$20 \sec @ 95^{\circ} \mathrm{C}$	$3 \mathrm{sec} @ 95^{\circ} \mathrm{C}$	$30 \mathrm{sec} @ 60^{\circ} \mathrm{C}$

a. Required only if AmpErase UNG is added to the reactions.

IMPORTANT! For most applications and when large amounts of cDNA are required, Applied Biosystems recommends 120 minutes at $37{ }^{\circ} \mathrm{C}$ for reverse transcription to achieve optimal conversion.

Optimizing Primer Concentrations

By independently varying forward and reverse primer concentrations, you can identify the concentrations that provide optimal assay performance. Primers are always in large molar excess during the exponential phase of PCR amplification; by adjusting their initial concentration, their effective melting temperatures can be adjusted.

When using the TaqMan $2 \times$ Universal PCR Master Mix, Applied Biosystems recommends the primer concentrations shown in Table 3-15. Detailed discussions follow for the:

- Primer optimization matrix (page 3-22)
- 5' Nuclease quantification assays (using TaqMan Probe-based chemistry, page 3-22)
- SYBR Green I Dye quantification assays (page 3-23)

Default Primer Concentrations
 The recommended primer concentrations listed in Table 3-15 are for DNA and cDNA quantification assays.

Table 3-15 Recommended primer concentrations for DNA and cDNA quantification assays

Chemistry	Concentrations (nM)	
	Forward Primer	Reverse Primer
TaqMan probe	900	900
SYBR Green I dye	50	50

Primer A primer optimization matrix allows you to determine the minimum primer Optimization Matrix concentration yields the minimum C_{T} and maximum ΔR_{n}.

A primer optimization matrix can help to compensate for nonspecific primer binding, which can reduce the amount of primer available to bind at its specific site.

5' Nuclease Quantification Assays

For a 5^{\prime} nuclease quantification assay, optimal performance is achieved by selecting the primer concentrations that provide the lowest C_{T} and highest ΔR_{n} for a fixed amount of target template.

The results of a typical TaqMan primer optimization matrix experiment are shown in Figure 3-2. Figure 3-2(a) shows the amplification plots for all primer concentration combinations in linear view. Figure 3-2(b) shows the same data in log view format. The combination of $50-\mathrm{nM}$ forward and reverse primer (Plot group C) gives both the lowest $\Delta \mathrm{R}_{\mathrm{n}}$ and highest C_{T}. All other primer combinations that contain a $150-\mathrm{nM}$ concentration of either the forward or reverse primer (Plot group B) give a reduced ΔR_{n}. All primer combinations that contain at least $300-\mathrm{nM}$ forward and reverse primer (Plot group A) give both the highest $\Delta \mathrm{R}_{\mathrm{n}}$ and the lowest C_{T}; as a result, any of the plot group A or B would provide optimal performance.

It should be noted that, although C_{T} values are the parameter by which quantitative values are assigned in a real-time Quantification Assay, ΔR_{n} values can also prove important when trying to obtain maximum sensitivity and reproducibility.

Figure 3-2 Primer optimization experimental results showing amplification plots of primer combinations
Plot group key:
A: Combinations that contain at least 300 nM of forward and reverse primer
B: Combinations that contain at least 150 nM of forward and reverse primer
C: Combinations that contain at least 50 nM of forward and reverse primer

SYBR ${ }^{\circledR}$ Green I Dye Quantification Assays

Optimizing primer concentrations is slightly more complex for a SYBR Green I dye quantification assay. The same primer optimization matrix should be performed; however, this time it must include NTCs. In this case, the primer concentrations selected should provide a low C_{T} and high ΔR_{n} when run against the target template, but should not produce nonspecific product formation with NTCs. An ideal NTC amplification plot is shown in Figure 3-1 on page 3-6.

Dissociation curves or gel analysis can be extremely useful when selecting optimal primer concentrations for a SYBR Green I dye Quantification Assay. This is demonstrated in Figure 3-3 on page 3-24, which shows the results from a primer optimization matrix at primer concentrations of $900-\mathrm{nM}$ forward and reverse primers. The strong amplification of the NTC wells shown in Figure 3-3(a) indicates that significant nonspecific amplification is occurring. This is confirmed by the dissociation curve data shown in Figure 3-3(b), which shows that the melting
temperature of the product generated in the absence of template is lower than the melting temperature of the specific product generated with template. This is typical of primer-dimer formation and indicates that lower primer concentrations may provide more optimal results.

Figure 3-3 Amplification data using SYBR Green I dye chemistry (a) Amplification plot (linear view) demonstrating suspected nonspecific amplification in NTC wells.
(b) Dissociation curve analysis confirming that product in NTC wells has a different melting temperature from the specific product.

Optimizing the Probe Concentration

The recommended probe concentration of 250 nM ensures excellent assay performance. However, depending on the requirements of the assay, a probe optimization experiment can prove useful.
Note: No probe is required for SYBR Green I dye detection.

Recommended The recommended probe concentrations for DNA and cDNA quantification assays Probe Concentrations
using TaqMan Probe-based chemistry is 250 nM .
Figure 3-4 shows the results of a probe optimization experiment in which the probe
concentration is varied from 50 to 250 nM . Figure 3-4(a) shows an increase in ΔR_{n} as the probe concentration is increased, whereas Figure 3-4(b) shows that the C_{T} value changes with sufficient probe concentrations.

It should be noted, however, that to ensure the best reproducibility, especially when wishing to detect low copy numbers of a target sequence, it is necessary to avoid probe limiting concentrations. The assay should be run at a probe concentration of 250 nM . By using a 250 nM concentration, probe limitation is avoided and large $\Delta \mathrm{R}_{\mathrm{n}}$ values are ensured. Large ΔR_{n} values indicate a robust assay that is performing at high efficiency, giving high product yield and allowing more accurate peak measurement.

Figure 3-4 Amplification plot (linear and log views) of probe concentration titration from 50 to 250 nM

Using Multiplex PCR

Multiplex PCR is the use of more than one primer/probe set in the same tube. Multiplex PCR is most commonly used in 5^{\prime} nuclease assays for the relative quantification of gene expression.
Typically one probe (labeled with $\mathrm{FAM}^{\mathrm{TM}}$ dye) is used to detect the target species; another probe (labeled with VIC^{\circledR} dye) is used to detect an endogenous control (internal control gene). Running both assays in a single tube reduces both the running costs and the dependence on accurate pipetting when splitting a sample into two separate tubes.

Multiplex in

 Contrast to SingleplexIn order to multiplex using the comparative C_{T} method, you must ensure that the endogenous control that you have selected is more abundant (lower C_{T}) than all of the targets that you are trying to quantify under all conditions and then you must run the endogenous control assay as a primer-limited assay. For multiplexing, the endogenous control assay (for the more abundant template) in each reaction must be primer limited to avoid competitive PCR that may alter the C_{T} of the less abundant template.
Primer-limited endogenous control reactions are used in multiplex assays to normalize for the amount of input nucleic acid into different wells as well as to normalize for effects on the target assay in the same well. However, a primer-limited assay may be more susceptible to fluctuations in reaction conditions than the primer non-limited target assay that it is normalizing.

Doing this in a multiplex format becomes increasingly more complex as the number of targets you wish to quantify increases. It becomes increasingly unlikely that you will be able to identify a suitable endogenous control that will be more abundant than all of the targets you wish to query and whose expression does not change as a result of the experimental conditions or across different samples.

As a result, for an increasing number of targets, it is likely to be more efficient and effective to run the targets and controls in the singleplex format utilizing the precision of the real-time PCR system in conjunction with delivery of equivalent amounts of input material to different reaction wells.

For these reasons, when you analyze multiple numbers of targets it is likely to be more effective to run your assays in the singleplex format. To multiplex, you would have to first run all of your target assays and endogenous control assays in both the multiplex and singleplex format and compare C_{T} values from both formats to determine if there are any effects of the multiplexing on your C_{T} values-which could be a larger undertaking than the study itself.

Also by using the singleplex method, any target can potentially be used as an endogenous control at the analysis step of the process. Any target whose expression level does not change with experimental conditions or across samples may serve as an endogenous control. Therefore, the more targets you have in a singleplex format, the higher the probability that you will have one or more suitable endogenous controls against which to normalize your remaining targets.

Primer Limiting in Multiplex Assays

To generate an accurate multiplex assay, it is important to ensure that the amplification of one species does not dominate the other. Otherwise, the amplification of a highly abundant species can prevent the less abundant species from amplifying efficiently. Such a scenario could easily produce inaccurate results and, in severe cases, inhibit detection of the less abundant species completely. This situation can be avoided by limiting the concentrations of the primers used to amplify the more abundant species, thereby "turning off" the amplification soon after the C_{T} has been established.

Primer limitation results in the reaction components common to both assays not being exhausted, allowing the amplification of the less abundant species to continue at high efficiency. If the more abundant species is not known, it should be determined before entering into a multiplex assay system by running both targets in separate tubes. Both amplifications should be primer limited if neither species is consistently more abundant.

Considering Relative Abundance of the Target and Reference

In applying the primer limitation to target and endogenous control amplifications, the relative abundance of the two species must be considered. For quantification of gene expression, it is possible to use rRNA as an endogenous control. The concentration of rRNA in total RNA is always greater than the concentration of any target mRNA. Therefore, in multiplex reactions amplifying both target and rRNA, only the concentrations of the rRNA primers need to be limited.

Limiting Primer Matrix

To define limiting primer concentrations, run a matrix of forward and reverse primer concentrations using the value of the minimum initial template. The goal is to identify primer concentrations that reduce the ΔR_{n} of the assay without affecting the C_{T} value. Table 3-16 illustrates a recommended matrix of forward and reverse primers varying in concentration from 20 to 100 nM .

Note: Although following all design criteria does facilitate the ability to identify limiting primer concentrations, it may not be possible for all assays. If a limiting primer matrix experiment does not enable the identification of primer limiting concentrations, it will be necessary to redesign at least one primer or run the reactions in separate tubes.

Table 3-16 Matrix of varying concentrations of forward and reverse primers (20 to 100 nM)

Forward: Reverse:	100 nM 100 nM	100 nM 80 nM	100 nM 60 nM	100 nM 40 nM	100 nM 20 nM
Forward: Reverse:	80 nM 100 nM	80 nM 80 nM	80 nM 60 nM	80 nM 40 nM	80 nM 20 nM
Forward: Reverse:	60 nM 100 nM	60 nM 80 nM	60 nM 60 nM	60 nM 40 nM	60 nM 20 nM
Forward: Reverse:	40 nM 100 nM	40 nM 80 nM	40 nM 60 nM	40 nM 40 nM	40 nM 20 nM
Forward: Reverse:	20 nM 100 nM	20 nM 80 nM	20 nM 60 nM	20 nM 40 nM	20 nM 20 nM

Example

The results of a limiting primer matrix experiment are shown in Figure 3-5. Figure 3-5(a) shows that only when lowering the primer concentrations below approximately 50 nM is the C_{T} value significantly affected. Figure 3-5(b) shows the corresponding relationship between primer concentrations and $\Delta \mathrm{R}_{\mathrm{n}}$, and demonstrates that lower product yields can be achieved by decreasing forward and reverse primer concentrations.
The plateau area visible in Figure 3-5(a) shows the region in which suitable primer limiting concentrations can be found. In this area, the C_{T} (and therefore the corresponding quantification value) is unchanged, whereas the ΔR_{n} value and corresponding product yield are significantly reduced.
For this example, an appropriate selection of primer limiting concentrations would be at least 50 nM forward and reverse primer. It is important to note that probe concentration should be kept at an optimal level even when an assay is primer limited to ensure that the signal produced is large enough for accurate multicomponenting by the Sequence Detection Systems software.
a)

b)

Figure 3-5 Results from Limiting Primer Matrix experiment
(a) Shows how C_{T} value is affected by variation in forward and reverse primer concentrations. Plateau region indicated shows area where C_{T} value remains constant.
(b) Shows reduction in ΔR_{h} values as primer concentration decreases.

Section 3.2 Selecting a Data Analysis Approach and Determining Results

In This Section This section covers:
Data Analysis 3-32
Relative or Absolute Quantification 3-32
Relative Standard Curve Method for Quantification 3-36
Comparative CT Method for Relative Quantification 3-42
Comparative CT Method for Relative Quantification 3-45
Standard Curve Method for Absolute Quantification 3-53

Data Analysis

Data analysis varies depending on the product, assay, and instrument. Refer to the appropriate instrument user guide for instructions on how to analyze your data.

General Process The general process for analyzing the data from gene expression assays involves:

1. Viewing the amplification plots for the entire plate
2. Setting the baseline and threshold values
3. Using the methods described in this section to determine results

Resources for Data Analysis

For more information about analyzing your data, see Livak and Schmittgen, 2001.
Also refer to the following documents:

- The appropriate instrument user guide
- Data Analysis and Relative Quantification chapters in the TaqMan Cytokine Gene Expression Plate I Protocol (PN 4306744). This protocol provides examples using multiplex reactions.
- RQ Manager Software User Guide (PN 4351670)
- Applied Biosystems 7900HT Fast Real-Time PCR System and SDS Enterprise Database User Guide (PN 4351684)
- SDS Enterprise Database for the Applied Biosystems 7900HT Fast Real-Time PCR System Administrator Guide (PN 4351669)
- Applied Biosystems 7300/7500/7500 Fast Real-Time PCR System Relative Quantification Getting Started Guide (PN 4378655)
- Applied Biosystems 7300/7500/7500 Fast Real-Time PCR System Absolute Quantification Getting Started Guide (PN 4378656)
- Applied Biosystems 7300/7500/7500 Fast Real-Time PCR System Installation and Maintenance Getting Started Guide (PN 4378657)
- Applied Biosystems 7500 Fast Real-Time PCR System Performing Fast Gene Quantification Quick Reference Card (PN 4378659)
- Applied Biosystems 7900HT Fast Real-Time PCR System User Bulletin: Performing Fast Gene Quantification (PN 4352533)
- TaqMan ${ }^{\circledR}$ Gene Expression Assays Protocol (PN 4333458)

Note: Some documents are available through the Internet (see "How to Obtain Support" on page ix).

Relative or Absolute Quantification

You can design your assay as relative or absolute quantification. How you calculate the results of your Quantification Assays depends on your experimental design.

What Is Relative
Quantification?

Relative quantification describes the change in expression of the target gene in a test sample relative to a calibrator sample. The calibrator sample can be an untreated control or a sample at time zero in a time-course study (Livak and Schmittgen, 2001). Relative quantification provides accurate comparison between the initial level of template in each sample.

Example

You can compare the level of expression of a gene (Gene A) between a treated and untreated sample (for example, a drug treatment) relative to the expression of a second gene (Gene B). The resulting data is the expression of Gene A in treated and untreated samples normalized to the expression of Gene B.

> Calculation
> Methods for Relative Quantification

Relative quantification can be performed with data from all the real-time PCR instruments. The calculation methods used for relative quantification are:

- Relative standard curve method, singleplex PCR
- Comparative C_{T} method $\left(\Delta \Delta \mathrm{C}_{\mathrm{T}}\right)$, singleplex PCR
- Relative standard curve method, multiplex PCR
- Comparative C_{T} method, multiplex PCR

Note: TaqMan Gene Expression Assays and Custom TaqMan Gene Expression Assays, as well as assays that use the TaqMan Fast Universal PCR Master Mix (2X), No AmpErase UNG, are intended for use in singleplex reactions.

Determining Which Method to Use

Because all the calculation methods can give equivalent results, determine which method to use by considering the following:

- Relative Standard Curve Method-

Running the target and endogenous control amplifications in separate tubes and using the relative standard curve method of analysis requires the least amount of optimization and validation.

- Comparative $\mathbf{C}_{\mathbf{T}}$ Method

To use the comparative C_{T} method, a validation experiment must be run to show that the efficiencies of the target and endogenous control amplifications are approximately equal. The advantage of using the comparative C_{T} method is that the need for a standard curve is eliminated. This increases throughput because wells no longer need to be used for the standard curve samples. It also eliminates the adverse effect of any dilution errors made in creating the standard curve samples. Here, the target and endogenous control amplifications are run in separate tubes.

- Multiplex PCR

To amplify the target and endogenous control in the same tube, limiting primer concentrations must be identified and shown not to affect C_{T} values. By running the two reactions in the same tube, throughput is increased and the effects of pipetting errors are reduced.

What Is Absolute Quantification?

Absolute quantification determines the input copy number of the template of interest, usually by relating the PCR signal to a standard curve (Livak and Schmittgen, 2001).

Example

Use absolute quantification to measure viral copy number in samples for which this information is not known (unknown samples). In order to measure the viral copy number in the unknown samples, compare the measurement to a standard curve of known viral copy numbers. Since the basis for measurement is a standard curve with known quantities of virus, the measurement would be absolute.

Calculation Methods for Absolute Quantification

Absolute quantification can be performed with data from all the real-time PCR instruments. However, the absolute quantities of the standards must first be measured by some independent means.

The calculation method used for absolute quantification is the standard curve method.

Terms Used The terms in Table 3-17 are used in this discussion of absolute and relative quantification.

Table 3-17 Terms used in absolute and relative quantification

Control/Term	\quad Definition
Standard	A sample of known concentration used to construct a standard curve.
Reference	A passive or active signal used to normalize experimental results. Endogenous and exogenous controls are examples of active references. Active reference means the signal is generated as the result of PCR amplification. The active reference has its own set of primers and probe. - Endogenous control An RNA or DNA that is in each experimental sample as isolated. By using an endogenous control as an active reference, you can normalize quantification of a messenger RNA (mRNA) target for differences in the amount of total RNA added to each reaction.
- Exogenous control	
A characterized RNA or DNA spiked into each sample at a known	
concentration. An exogenous active reference is usually an in vitro	
construct that can be used as an internal positive control (IPC) to	
distinguish true target negatives from PCR inhibition. An exogenous	
reference can also be used to normalize for differences in efficiency	
of sample extraction or complementary DNA (cDNA) synthesis by	
reverse transcriptase.	

For More For more information on absolute and relative quantification, refer to Livak and Information Schmittgen, 2001 (see Appendix C on page C-1 for full reference). This document contains detailed procedures for performing the experiments referenced in this section.

Relative Standard Curve Method for Quantification

Requirements

Endogenous Control

It is easy to prepare standard curves for relative quantification because quantity is expressed relative to some basis sample, such as the calibrator.

For all experimental samples, normalized target quantity is determined from the standard curve and divided by the normalized target quantity of the calibrator. Thus, the calibrator becomes the $1 \times$ sample, and all other quantities are expressed as an n fold difference relative to the calibrator. For example, in a study of drug effects on expression, the untreated control would be an appropriate calibrator.

Quantification by the relative standard curve method requires that:

- Stock RNA or DNA is accurately diluted. If two-fold dilutions of a total RNA preparation from a control cell line are used to construct a standard curve, the units can be the dilution values $1,0.5,0.25,0.125$, and so on. By using the same stock RNA or DNA to prepare standard curves for an entire study, the relative quantities determined can be compared across the plates.
- For quantification normalized to an endogenous control, standard curves are prepared for both the target and the endogenous control. For each experimental sample, the amount of target and endogenous control is determined from the appropriate standard curve. Then, the target amount is divided by the endogenous control amount to obtain a normalized target value.
- One of the experimental samples is the calibrator, or $1 \times$ sample. Each of the normalized target values is divided by the calibrator normalized target value to generate the relative expression levels.
- Pipette correctly and accurately. Pipette volumes greater than $5 \mu \mathrm{~L}$ of nucleic acid sample to minimize inaccuracy.

Amplification of an endogenous control can be performed to standardize the amount of sample RNA or DNA added to a reaction. For the quantification of gene expression, researchers have used β-actin, glyceraldehyde-3-phosphate dehydrogenase (GAPDH), 18S ribosomal RNA (rRNA), or other transcripts for an endogenous control.

Another approach is to normalize to a measurement external to the PCR experiment. For example, you can use UV absorption to determine the amount of RNA added to a cDNA reaction. You then run a PCR using cDNA derived from the same amount of input RNA. You can use this approach to select an appropriate endogenous control and to determine if an endogenous control is affected by the treatment. In this case, the target gene and the endogenous reference are the same item (Livak and Schmittgen, 2001).

Standards

How to Perform
 the Relative Standard Curve Method

Because the sample quantity is divided by the calibrator quantity, the unit from the standard curve cancels out. Therefore, all that is required of the standards is that their relative dilutions be known. For relative quantification, this means any stock RNA or DNA containing the appropriate target can be used to prepare standards.

To perform the relative standard curve method for quantification:

- Perform a run on your real-time PCR instrument, this includes:
- Setting up a reaction plate
- Analyzing the data
- Creating a standard curve
- Determine the relative values.

See "Example of the Relative Standard Curve Method" below for an illustration of these steps.

Example of the Relative Standard Curve Method

This example illustrates the use of standard curves for relative quantification, based on:

- The target is human c-myc mRNA, and the endogenous control is human GAPDH mRNA.
- The target and endogenous control are amplified in separate tubes.
- Dilutions of a cDNA sample prepared from total Raji RNA are used to construct standard curves for the c-myc and the GAPDH amplifications.
- The unknown samples (samples to characterize) are cDNA prepared from total RNA isolated from human brain, kidney, liver, and lung.

Performing the Run

The procedure below is a general outline for performing a run. Refer to your instrument user manual for detailed instructions.

1. Set up a reaction plate.
2. Place the reaction plate on your real-time PCR instrument and start the run.
3. When the run is complete, analyze the data.
4. Set the threshold and create a standard curve from the data.

The figure below shows the standard curve for the amplification of the cmyc target detected using a FAM dye labeled probe.

Determining the Relative Values

To determine the relative value:

1. Calculate the log input amount by entering the following formula in one cell of the work sheet of any spreadsheet program:
$=\left(\left[\right.\right.$ cell containing $\mathrm{C}_{т}$ value $\left.]-\mathrm{b}\right) / \mathrm{m}$
where $\mathrm{b}=\mathrm{y}$-intercept of standard curve line and $\mathrm{m}=$ slope of standard curve line

Note: In this example, $\mathrm{b}=25.712$ and $\mathrm{m}=-3.385$
for the equation $\mathrm{y}=\mathrm{mx}+\mathrm{b}$.
2. Calculate the input amount by entering in an adjacent cell the following formula:

$$
=10^{\wedge} \text { [cell containing log input amount] }
$$

Note: The units of the calculated amount are the same as the units used to construct the standard curve, which are nanograms of Total Raji RNA. If it is calculated that an unknown has 0.23 ng of Total Raji RNA, then the sample contains the same amount of c-myc mRNA found in 0.23 ng of the Raji Control RNA.
3. Repeat the steps to construct a standard curve for the endogenous reference using the $\mathrm{C}_{\text {t }}$ values determined with the GAPDH probe. Refer to Table 3-18 on page 3-40.
4. Because c-myc and GAPDH are amplified in separate tubes, average the cmyc and GAPDH values separately.
5. Divide the amount of c-myc by the amount of GAPDH to determine the normalized amount of c-myc (c-myc ${ }_{\mathrm{N}}$).
6. Designate the calibrator.

In Table 3-18 on page 3-40, brain is arbitrarily designated as the calibrator.
7. Divide the averaged sample (kidney, liver, or lung) value by the averaged calibrator (brain) value. Calculate the coefficient of variation (see below), based on the cv of the sample and brain.

Calculating the Coefficient Of Variation

The $\mathrm{c}-\mathrm{myc}_{\mathrm{N}}$ value is determined by dividing the average c -myc value by the average GAPDH value. The standard deviation of the quotient is calculated from the standard deviations of the c-myc and GAPDH values using the following formula:

$$
\mathrm{cv}=\sqrt{\mathrm{cv}_{1}{ }^{2}+\mathrm{cv}_{2}{ }^{2}}
$$

where:

$$
\begin{aligned}
& \mathrm{cv}=\frac{\mathrm{s}}{\overline{\mathrm{X}}}=\frac{\text { stddev }}{\text { meanvalue }} \\
& \mathrm{cv}_{1}=\mathrm{cv}_{\mathrm{c}-\mathrm{myc}} \\
& \mathrm{cv}_{2}=\mathrm{cv}_{\mathrm{GAPDH}}
\end{aligned}
$$

As an example, from Table 3-18 on page 3-40 (brain sample):

$$
\mathrm{cv}_{1}=\frac{\text { stddev }_{\mathrm{c}-\mathrm{myc}}}{\text { meanvalue }_{\mathrm{c}-\mathrm{myc}}}=\frac{0.004}{0.039}
$$

and

$$
\mathrm{cv}_{2}=\frac{\operatorname{stddev}_{\mathrm{GAPDH}}}{\text { meanvalue }_{\text {GAPDH }}}=\frac{0.034}{0.54}
$$

$$
\operatorname{cv}=\sqrt{\left(\frac{0.004}{0.039}\right)^{2}+\left(\frac{0.034}{0.54}\right)^{2}}=0.12
$$

since

$$
\begin{aligned}
& \mathrm{cv}=\frac{\mathrm{s}}{\overline{\mathrm{X}}} \\
& \mathrm{~s}=(\mathrm{cv})(\overline{\mathrm{X}})=(\mathrm{cv})\left(\frac{\text { meanvalue }_{\mathrm{c}-\mathrm{myc}}}{\text { meanvalue }_{\mathrm{GAPDH}}}\right) \\
& \mathrm{s}=(0.12)\left(\frac{0.039}{0.54}\right)=(0.12)(0.07) \\
& \mathrm{s}=0.008
\end{aligned}
$$

Comparing Samples with a Calibrator

The normalized amount of target $\left(\mathrm{c}-\mathrm{myc}_{\mathrm{N}}\right)$ is a unitless number that can be used to compare the relative amount of target in different samples. One way to make this comparison is to designate one of the samples as a calibrator. In Table 3-18 on page 3-40, brain is designated as the calibrator; brain is arbitrarily chosen because it has the lowest expression level of the target.

Relative Standard Curve Method Results

Each c-myc ${ }_{N}$ value in Table 3-18 on page 3-40 is divided by the brain c-myc ${ }_{N}$ value to give the values in the final column. These results indicate the kidney sample contains 5.5 times as much c-myc mRNA as the brain sample, liver 34.2 times as much, and lung 15.7 times as much.

Note: Averages and standard deviations are calculated from unrounded data, not the rounded data presented here.

Table 3-18 Amounts of c-myc and GAPDH in human brain, kidney, liver, and lung tissues

Tissue	c-myc ng Total Raji RNA	GAPDH ng Total Raji RNA	$\mathrm{c}-\mathrm{myc}_{\mathrm{N}}$ Norm. to GAPDH ${ }^{\text {a }}$	$\mathrm{c}-\mathrm{myc}_{\mathrm{N}}$ Rel. to Brain ${ }^{\text {b }}$
Brain (Designated calibrator)	0.033	0.51		
	0.043	0.56		
	0.036	0.59		
	0.043	0.53		
	0.039	0.51		
	0.040	0.52		
Average	0.039 ± 0.004	0.54 ± 0.034	0.07 ± 0.008	1.0 ± 0.12
Kidney	0.40	0.96		
	0.41	1.06		
	0.41	1.05		
	0.39	1.07		
	0.42	1.06		
	0.43	0.96		
Average	0.41 ± 0.016	1.02 ± 0.052	0.40 ± 0.025	5.5 ± 0.35
Liver	0.67	0.29		
	0.66	0.28		
	0.70	0.28		
	0.76	0.29		
	0.70	0.26		
	0.68	0.27		
Average	0.70 ± 0.036	0.28 ± 0.013	2.49 ± 0.173	34.2 ± 2.37

Table 3-18 Amounts of c-myc and GAPDH in human brain, kidney, liver, and lung tissues (continued)

Tissue	c-myc ng Total Raji RNA	GAPDH ng Total Raji RNA	c-myc Norm. to GAPDH ${ }^{\text {a }}$	$\mathrm{c}-\mathrm{myc}_{\mathrm{N}}$ Rel. to Brain ${ }^{\text {b }}$
Lung	0.97	0.82		
	0.92	0.88		
	0.86	0.78		
	0.89	0.77		
	0.94	0.79		
	0.97	0.80		
Average	0.93 ± 0.044	0.81 ± 0.041	1.15 ± 0.079	15.7 ± 1.09

a. The c-myc ${ }_{N}$ value is determined by dividing the average c-myc value by the average GADPH value. The standard deviation of the quotient is calculated from the standard deviations of the c-myc and GADPH values.
b. The calculation of $\mathrm{c}-\mathrm{myc}_{\mathrm{N}}$ relative to brain involves division by the calibrator value. This is a division by an arbitrary constant, so the cv of this result is the same as the cv for c-myc ${ }_{\mathrm{N}}$.

Comparative C_{T} Method for Relative Quantification

The comparative C_{T} method is similar to the relative standard curve method, except that it uses an arithmetic formula rather than a standard curve to achieve the same result for relative quantification.

When using the comparative C_{T} method with real-time PCR, you can normalize to an endogenous reference using data generated during the PCR experiment. This is especially useful when you have a limited amount of RNA or when you perform high-throughput processing of a large number of samples (Livak and Schmittgen, 2001).

IMPORTANT! You can eliminate the use of standard curves for relative quantification if you perform a validation experiment. (See "Performing the Validation Experiment" below.)

Formula The amount of target, normalized to an endogenous control and relative to a calibrator, is calculated using:

$$
2^{-\Delta \Delta C_{T}}
$$

See Appendix A, "Formulas," for a derivation of the formula.

Performing the Validation Experiment

Before using the $\Delta \Delta \mathrm{C}_{\mathrm{T}}$ method for quantification, perform a validation experiment like the one below to verify that efficiencies of target and reference are approximately equal.

To perform the validation experiment:

1. Choose your target and endogenous control.
2. Perform a dilution series of different input amounts for your target and endogenous control.
Note: When possible, serial dilutions should cover 5 to 6 orders of magnitude.
3. Run the samples on your real-time PCR instrument.
4. Analyze your data.
5. Calculate the average C_{T} and $\Delta \mathrm{C}_{\mathrm{T}}$ values for your target and endogenous control (see Table 3-19 on page 3-44).

To perform the validation experiment: (continued)
6. Plot the log of the input amount vs. $\Delta \mathrm{C}_{\mathrm{T}}$ as explained on page 3-38 (see the figure below).

As a guideline, the absolute value of the slope of log input amount vs. $\Delta \mathrm{C}_{\mathrm{T}}$ should be less than 0.1 .

The slope in the figure above is -0.0034 , which passes this test.
Note: The less-than- 0.1 guideline should provide gene expression results with a low degree of experimental variation. However, if you must quantify any variation introduced by the comparative C_{T} method, you need to perform and compare the results of parallel experiments using the comparative C_{T} and the standard curve method.

| If the efficiencies of the two |
| :--- | :--- |
| systems are... |\quad| Then... |
| :--- |\(\left|\begin{array}{l}- You can use the \Delta \Delta \mathrm{C}_{\mathrm{T}} calculation for the

relative quantification of target without

running standard curves on the same plate.\end{array}\right|\)| -Perform the validation experiment over a
 larger dynamic range (5 to 6 orders of
 magnitude) or design and synthesize new
 primers to improve efficiency.
 -Perform the quantification using the
 standard curve method.
 >0.1 |
| :--- |

Table 3-19 Average C_{T} value for c-myc and GAPDH at different input amounts

Input Amount ng Total RNA	c-myc Average $\mathbf{C}_{\mathbf{T}}$	GAPDH Average $\mathbf{C}_{\mathbf{T}}$	$\Delta \mathbf{C}_{\mathbf{T}}$ c-myc - GAPDH
100.0	20.28 ± 0.11	15.23 ± 0.02	5.05 ± 0.11
10.0	23.88 ± 0.14	18.62 ± 0.04	5.26 ± 0.15
1.0	27.33 ± 0.09	22.18 ± 0.02	5.15 ± 0.09
0.1	30.93 ± 0.23	25.53 ± 0.07	5.40 ± 0.24
0.01	34.39 ± 0.37	29.13 ± 0.14	5.26 ± 0.39
0.001	37.03 ± 0.12	32.57 ± 0.13	4.46 ± 0.17

Relative
Efficiencies of
Target and Reference

How to Perform the Comparative C_{T} Method

Example of the Comparative C_{T} Method

For the $\Delta \Delta \mathrm{CT}$ calculation to be valid, the efficiency of the target amplification and the efficiency of the reference amplification must be approximately equal. To assess if two amplicons have the same efficiency, you can look at how $\Delta \mathrm{C}_{\mathrm{T}}$ varies with template dilution. The standard curves for c-myc and GAPDH used in the previous section provide the necessary data. Table 3-19 shows the average C_{T} value for c -myc and GAPDH at different input amounts.

To perform the comparative C_{T} method for relative quantification:

- Perform a run on your real-time PCR instrument. This includes:
- Setting up a reaction plate
- Analyzing the data
- Determine the $\Delta \mathrm{C}_{\mathrm{T}}$ value (Target -Endogenous control).
- Calculate the $\Delta \Delta \mathrm{C}_{\mathrm{T}}$ to determine fold difference in gene expression ($\Delta \mathrm{C}_{\mathrm{T}}$ Target $-\Delta \mathrm{C}_{\mathrm{T}}$ Calibrator).

See "Example of the Comparative CT Method" below.
This example illustrates the use of the comparative C_{T} method for relative quantification. In this example:

- The target is human c-myc mRNA and the endogenous control is human GAPDH mRNA.
- The target and endogenous control are amplified in separate tubes.
- The unknown samples are cDNA prepared from total RNA isolated from human brain, kidney, liver, and lung.

Performing the Run

The procedure below is a general outline for performing a run. Refer to your instrument user manual for detailed instructions.

To perform the run:

1. Set up a reaction plate.
2. Place the reaction plate on your instrument and start the run.
3. When the run is complete, analyze the data.

Comparative C_{T} Method Results

The C_{T} data used to determine the amounts of c-myc and GAPDH mRNA shown in Table 3-19 on page 3-44 are used to illustrate the $\Delta \Delta \mathrm{C}_{\mathrm{T}}$ calculation. Table 3-20 on page 3-46 shows the average C_{T} results for the human brain, kidney, liver, and lung samples and how these $\mathrm{C}_{\mathrm{T}} \mathrm{s}$ are manipulated to determine $\Delta \mathrm{C}_{\mathrm{T}}, \Delta \Delta \mathrm{C}_{\mathrm{T}}$, and the relative amount of c-myc mRNA. The results are comparable to the relative c-myc levels determined using the standard curve method as shown in Table 3-18.

Although the comparative C_{T} method can be used to make this type of tissue comparison, biological interpretation of the results is complex. The single relative quantity reported actually reflects variation in both target and reference transcripts across a variety of cell types that might be present in any particular tissue (Livak and Schmittgen, 2001).

Table 3-20 Relative quantification using the comparative C_{T} method

Tissue	Average $\mathrm{C}_{\text {T }}$		Average ΔC_{T} c-mycGAPDH ${ }^{\text {a }}$	$\underset{V_{A B}}{\Delta C^{b}}$	$\begin{gathered} -\Delta \Delta \mathbf{C}_{T} \\ \left(\Delta \mathbf{C}_{T}-\Delta \mathbf{C}_{\mathrm{T}, \text { Brain }}\right)^{c} \end{gathered}$	RQ c-myc ${ }_{\mathrm{N}}$ Rel. to Brain ${ }^{\text {d }}$	RQ ${ }^{\text {e }}$	
	Target c-myc	Endogenous Control GAPDH					Min	Max
Brain Calibrator	30.49	23.63	6.86	0.087	0.00	1.0	0.9	1.2
Kidney	27.03	22.66	4.37	0.050	2.50	5.6	5.2	6.2
Liver	26.25	24.60	1.65	0.049	5.21	37.0	34.0	40.3
Lung	25.83	23.01	2.81	0.049	4.05	16.5	15.2	18.0

a. The average $\Delta \mathrm{C}_{\mathrm{T}}$ value is determined by subtracting the average GAPDH C_{T} value from the average c-myc C_{T} value . For example, $\Delta \mathrm{C}_{\mathrm{T}}$ Brain $=30.49-23.63=6.86$.
b. $\mathrm{V}_{\mathrm{AB}}=$ Applied Biosystems' variability function for calculating the variability of the test sample $\Delta \mathrm{C}_{\mathrm{T}}$ statistic.
c. The calculation of $-\Delta \Delta \mathrm{C}_{\mathrm{T}}$ involves subtracting $\Delta \mathrm{C}_{\mathrm{T}}$ calibrator value from the $\Delta \mathrm{C}_{\mathrm{T}}$ target value.

For example, $-\Delta \Delta \mathrm{C}_{\mathrm{T}}$ Kidney $=-\left(\Delta \mathrm{C}_{\mathrm{T}}\right.$ Kidney $-\Delta \mathrm{C}_{\mathrm{T}}$ Brain) $=-(4.37-6.86)=2.50$ (using full data value, not the rounded data presented in this table).
d. The RQ for c-myc relative to brain is calculated using the equation: $2-\left(\Delta \mathrm{C}_{\mathrm{T}}\right)$.

For example, the Kidney sample has a $\Delta \Delta \mathrm{C}_{\mathrm{T}}$ value of -2.50 . Therefore, $2^{-\left(\Delta \Delta \mathrm{C}_{\mathrm{T}}\right)}=2^{-(-2.50)}=5.7$.
e. The RQ minimum and RQ maximum define statistical boundaries for relative quantification, based upon a user-specified RQ Min/Max confidence setting. For example, a confidence setting of 95.00% means that the user can expect the true RQ value to fall within the RQ Min/Max range with a 95% confidence. The RQ Min/Max is calculated using the equation: $2^{-\left(\Delta \Delta \mathrm{C}_{\mathrm{T}(s, t)^{\mathrm{T}}} \times \mathrm{V}_{\mathrm{AB}}\left(\mathrm{C}_{\mathrm{T}(s, t))}\right) \text {, where } \Delta \Delta \mathrm{C}_{\mathrm{T}(s, t)}=\Delta \mathrm{C}_{\mathrm{T}(s, t)}-\Delta \mathrm{C}_{\mathrm{T}(\text { calibrator,t) }}, s=\text { sample name, } t=\text { target detector, } \mathrm{T}=\text { student's } \mathrm{T} \text { value } .\right.}$ computed at the selected confidence setting using a degrees of freedom that is associated with the test sample $\Delta \mathrm{C}_{\mathrm{T}(s, t)}$, and $V_{A B}$ is as defined in footnote b above.
Note: These example experiment results are from a single plate study using four replicates per target and endogenous controls for each tissue.

Multiplex PCR (Same-Tube) Method for Relative Quantification

Multiplex PCR is the use of more than one primer pair and probe in the same tube. You can use this method in relative quantification where one primer pair/probe amplifies the target and another primer pair/probe amplifies the endogenous control in the same tube.

You can perform a multiplex reaction for both the standard curve method and the comparative C_{T} method.

Advantages of Multiplex PCR

The advantages of performing target and reference reactions in the same tube are:

- Higher throughput is most evident if you are interested in analyzing a single target because the number of sample tubes is reduced by a factor of two.
- More efficient use of samples
- Reduction in reagent use and cost

See "Primer Limiting in Multiplex Assays" on page 3-28.

About Multiple Reporter Dyes

About Multicomponenting

The TaqMan ${ }^{\circledR}$ Probe-based chemistry includes multiple reporter dyes, which make it possible to amplify and detect target amplicon and endogenous control amplicon in the same tube.

The reporter dyes recommended for TaqMan probes are FAM $^{\mathrm{TM}}$ and VIC $^{\circledR}$ dyes. These dyes are distinguishable from one another because they have different emission wavelength maxima:

- FAM dye: $\lambda_{\text {max }}=518 \mathrm{~nm}$
- VIC dye: $\lambda_{\text {max }}=554 \mathrm{~nm}$

The software for all of the real-time PCR instruments uses a process called multicomponenting to distinguish reporter dyes, the quencher dye TAMRA ${ }^{\mathrm{TM}}\left(\lambda_{\max }=\right.$ 582 nm), if used, and the passive reference ROX $^{\text {TM }}$ dye ($\lambda_{\text {max }}=610 \mathrm{~nm}$).

Multicomponenting is a mathematical algorithm that uses pure dye reference spectra to calculate the contribution of each dye to a complex experimental spectrum. When using TaqMan MGB probes, no quencher dye (TAMRA) is necessary. Because there is one less dye to resolve, spectral resolution is improved.

Obtaining Accurate Quantification

For the most accurate quantification using two probes in one tube, use the reporter dyes that have the largest difference in emission maximum: FAM and VIC dye.

About Primer
 Limitation

Reactions designed to amplify two different sequences in the same tube share common reagents. If the two sequences have different initial copy numbers, it is possible for the more abundant species to use up these common reagents, impairing amplification of the rarer species. For accurate quantification, it is important that the two reactions do not compete. Competition can be avoided by limiting the concentration of primers used in the amplification reactions. For more information on primer limitations, see page 3-28.

> How to Perform Multiplex PCR with the Relative Standard Curve Method

To perform the multiplex PCR with the relative standard curve method for quantification:

- Perform a run on your real-time PCR instrument. This includes:
- Setting up a reaction plate
- Analyzing the data
- Creating a standard curve
- Determine the relative values.

See the example below for an illustration of these steps.
Example of Multiplex PCR with the Relative Standard Curve Method

This example illustrates the use of multiplex PCR with the relative standard curve method for quantification. In this example:

- The target is human c-myc mRNA and the endogenous control is human GAPDH mRNA.
- The target and endogenous control are amplified in the same tube.
- Dilutions of a cDNA sample prepared from Total Raji RNA are used to construct standard curves for the c-myc and the GAPDH amplifications.
- The unknown samples are cDNA prepared from total RNA isolated from human brain, kidney, liver, and lung.

Performing the Run

The same-tube and separate tube procedures for the relative standard curve method are identical, with the exceptions noted below.

To perform the run:

1. Perform the run per the procedures on page 3-37.

Exception: When you set up the reaction plate, the target amplicon and endogenous control amplicon are in the same tube.
Exception: $\Delta \mathrm{C}_{\mathrm{T}}$ is calculated for each reaction and then the $\Delta \mathrm{C}_{\mathrm{T}} \mathrm{S}$ are averaged.
2. Determine the relative values per the procedures in Table 3-17 on page 3-38.

Results of the Above Run

Table 3-21 shows the results of a same-tube experiment using the relative standard curve method. In this experiment, the target c-myc normalized to the endogenous control GAPDH was quantified.

Averages and deviations are calculated from unrounded data, not the rounded data presented here.

Table 3-21 Relative quantification using multiplex PCR with the relative standard curve method

Tissue	c-myc ng Total Raji RNA	GAPDH ng Total Raji RNA	c-myc Norm. to GAPDH	c-myc ${ }_{N}$ Rel. to Brain
Brain	0.031	0.618	0.05	
	0.038	0.532	0.07	
	0.032	0.521	0.06	
	0.038	0.550	0.07	
	0.032	0.577	0.06	
	0.037	0.532	0.07	
Average			0.06 ± 0.008	1.0 ± 0.14
Kidney	0.365	0.049	0.35	
	0.338	1.035	0.33	
	0.423	1.042	0.41	
	0.334	1.086	0.31	
	0.334	1.021	0.33	
	0.372	1.139	0.33	
Average			0.34 ± 0.035	5.4 ± 0.55
Liver	0.477	0.255	1.87	
	0.471	0.228	2.06	
	0.535	0.258	2.07	
	0.589	0.241	2.44	
	0.539	0.264	2.04	
	0.465	0.227	2.05	
Average			2.09 ± 0.186	33.3 ± 2.97
Lung	0.853	0.085	0.97	
	0.900	0.084	0.88	
	0.956	0.082	1.00	
	0.900	0.093	0.87	
	0.996	0.112	0.87	
	0.859	0.090	0.84	
Average			0.90 ± 0.062	14.4 ± 0.99

How to Perform Multiplex PCR with the Comparative C_{T} Method

To perform multiplex PCR with the comparative C_{T} method for relative quantification:

- Perform a validation experiment.
- Perform a run on your real-time PCR instrument. This includes:
- Setting up a reaction plate
- Analyzing the data
- Determine the $\Delta \mathrm{C}_{\mathrm{T}}$ value.
- Perform the $\Delta \Delta \mathrm{C}_{\mathrm{T}}$ calculation.

See the example below for an illustration of these steps.

Example of Multiplex PCR with the Comparative C_{T} Method

This example illustrates the use of multiplex PCR with the comparative C_{T} method for relative quantification. In this example:

- The target is human c-myc mRNA and the endogenous control is human GAPDH mRNA.
- The target and endogenous control are amplified in the same tubes.
- The unknown samples are cDNA prepared from total RNA isolated from human brain, kidney, liver, and lung.

Procedures

The same-tube and separate tube procedures for the comparative C_{T} method are identical, with the exceptions noted below.

To perform the run:

1. Perform the validation experiment per the procedures on page 3-42.
2. Perform the run per the procedures on page 3-45.

Exception: When you set up the reaction plate, the target amplicon and endogenous control amplicon are in the same tube.
Exception: Because c-myc and GAPDH data are being obtained from the same tube, calculations are carried out individually for each well before averaging.
3. Determine the $\Delta \mathrm{C}_{\mathrm{T}}$ value per the procedures on page 3-44.
4. Perform the $\Delta \Delta \mathrm{C}_{\mathrm{T}}$ calculation per the procedures on page 3-44.

Results of the Run

Table 3-22 shows the $\Delta \Delta \mathrm{C}_{\mathrm{T}}$ calculations for the same-tube experiment.
Table 3-22 Relative quantification using multiplex PCR with the comparative C_{T} method

Tissue	c-myc C_{T}	GAPDH $\mathrm{C}_{\text {T }}$	$\begin{gathered} \Delta \mathbf{C}_{\mathrm{T}} \\ \text { c-myc - GAPDH } \end{gathered}$	$\begin{gathered} \Delta \Delta \mathbf{C}_{\mathrm{T}} \\ \Delta \mathbf{C}_{\mathrm{T}}-\text { Avg. } \Delta \mathbf{C}_{\mathrm{T}}, \\ \text { Brain } \end{gathered}$	c-myc Rel. to Brain
Brain	32.38	25.07	7.31		
	32.08	25.29	6.79		
	32.35	25.32	7.03		
	32.08	25.24	6.84		
	32.34	25.17	7.17		
	32.13	25.29	6.84		
Average			6.93 ± 0.16	0.00 ± 0.16	$\begin{gathered} 1.0 \\ (0.9 \text { to 1.1) } \end{gathered}$
Kidney	28.73	24.30	4.43		
	28.84	24.32	4.52		
	28.51	24.31	4.20		
	28.86	24.25	4.61		
	28.86	24.34	4.52		
	28.70	24.18	4.52		
Average			4.47 ± 0.14	-2.47 ± 0.14	$\begin{gathered} 5.5 \\ (5.0 \text { to } 6.1) \end{gathered}$
Liver	28.33	26.36	1.97		
	28.35	26.52	1.83		
	28.16	26.34	1.82		
	28.02	26.44	1.58		
	28.15	26.31	1.84		
	28.37	26.53	1.84		
Average			1.81 ± 0.13	-5.12 ± 0.13	$\begin{gathered} 34.8 \\ (31.9 \text { to } 38.0) \end{gathered}$

Table 3-22 Relative quantification using multiplex PCR with the comparative C_{T} method (continued)

Tissue	c-myc $\mathrm{C}_{\text {T }}$	GAPDH $\mathrm{C}_{\text {T }}$	$\begin{gathered} \Delta \mathbf{C}_{\mathrm{T}} \\ \text { c-myc - GAPDH } \end{gathered}$	$\Delta \Delta \mathbf{C}_{T}$ $\Delta \mathbf{C}_{\mathrm{T}}-$ Avg. $\Delta \mathrm{C}_{\mathrm{T}}$, Brain	c-myc ${ }_{N}$ Rel. to Brain
Lung	27.47	24.55	2.92		
	27.39	24.33	3.06		
	27.30	24.43	2.87		
	27.39	24.32	3.07		
	27.24	24.18	3.06		
	27.46	24.34	3.12		
Average			3.02 ± 0.10	-3.92 ± 0.10	$\begin{gathered} 15.1 \\ (14.1 \text { to } 16.2) \end{gathered}$

Standard Curve Method for Absolute Quantification

Unlike the standard curve method for relative quantification, the standard curve method for absolute quantification depends on knowing the absolute quantities of the standards.

Quantification by the absolute standard curve method requires that:

- The DNA or RNA be a single, pure species. For example, plasmid DNA prepared from E. coli often is contaminated with RNA, which increases the A_{260} measurement and inflates the copy number determined for the plasmid.
- You pipette accurately because the standards must be diluted over several orders of magnitude. Plasmid DNA or in vitro transcribed RNA must be concentrated to measure an accurate A_{260} value. This concentrated DNA or RNA must then be diluted 10^{6} to 10^{12}-fold to be at a concentration similar to the target in biological samples.
- The stability of the diluted standards be considered, especially for RNA. Divide diluted standards into small aliquots, store at $-80^{\circ} \mathrm{C}$, and thaw only once before use. An example of the effort required to generate trustworthy standards is provided by Collins (Collins et al. 1995), who report on the steps they used to develop an absolute RNA standard for viral RNA quantification.
- You not use DNA as a standard for absolute quantification of RNA because there is no control for the efficiency of the reverse transcription step.

Standards
Plasmid DNA and in vitro transcribed RNA are commonly used to prepare absolute standards. Concentration is measured by A_{260} and converted to the number of copies using the molecular weight of the DNA or RNA.

How to Perform
the Absolute Standard Curve Method

Except for preparation of the standards (see above), the absolute standard curve methods and relative standard curve quantification methods are identical.

To perform the absolute standard curve method for quantification, see:

- "How to Perform the Relative Standard Curve Method" on page 3-36
- "Example of the Relative Standard Curve Method" on page 3-37

Allelic Discrimination Assays

This chapter covers:
About Allelic Discrimination Assays . 4-2
Purchasing an Applied Biosystems TaqMan SNP Genotyping Assay Product. . . . 4-4
TaqMan Pre-Developed Assay Reagents for Allelic Discrimination 4-6
Designing Your Own Allelic Discrimination Assay . 4-6

About Allelic Discrimination Assays

What Is an Allelic Discrimination Assay?

Instruments
Allelic discrimination assays can be used with the following instruments:

- Applied Biosystems 7900HT Fast Real-Time PCR System (7900HT System)
- ABI PrISM ${ }^{\circledR} 7900 \mathrm{HT}$ Sequence Detection System, upgradeable to the Applied
Biosystems 7900 HT Fast Real-Time PCR System with the 7900 HT System Fast
- ABI Prism ${ }^{\circledR} 7900$ HT Sequence Detection System, upgradeable to the Applied
Biosystems 7900 HT Fast Real-Time PCR System with the 7900 HT System Fast Service Upgrade
- Applied Biosystems 7300 Real-Time PCR System (7300 System)
- Applied Biosystems 7500 Real-Time PCR System (7500 System), upgradeable to the Applied Biosystems 7500 Fast Real-Time PCR System with the 7500 Fast Real-Time PCR Upgrade Kit
- Applied Biosystems 7500 Fast Real-Time PCR System (7500 Fast System)

Note: You can run allelic discrimination assays on a Fast-capable 7900HT System or 7500 Fast System using standard reagents; Allelic Discrimination Assays are not supported using Fast reagents and protocols.
Note: Use of the $7900 \mathrm{HT}, 7500$ Fast, 7500 , or 7300 Systems allows for Real-Time analysis of PCR, which is helpful for troubleshooting. If using a real-time PCR system for PCR amplification, perform the endpoint plate read separately.

Chemistry

An Allelic Discrimination Assay is an endpoint assay used to determine the genotype of samples. With this assay type, you can differentiate a single nucleotide polymorphism (SNP).
An Allelic Discrimination Assay determines if unknown samples are:

- Homozygotes (samples having only allele 1)
- Homozygotes (samples having only allele 2)
- Heterozygotes (samples having both allele 1 and allele 2)

Allelic Discrimination Assays can be used with fluorogenic 5^{\prime} nuclease chemistry (also known as TaqMan ${ }^{\circledR}$ Probe-based chemistry. For information, see "TaqMan Probe-Based Chemistry" on page 2-3).

Note: The SYBR ${ }^{\circledR}$ Green I dye chemistry and the TaqMan ${ }^{\circledR}$ Fast Universal PCR Master Mix (2X), No AmpErase ${ }^{\circledR}$ UNG, are not supported for Allelic Discrimination Assays.

Terms Used

in Allelic
Discrimination
Analysis

Table 4-1 Terms used in allelic discrimination analysis

Term	Definition
No template control (NTC)	A sample that does not contain template. The NTC shows background signal and is used as the negative control. It provides a means of measuring contamination that might give a false positive signal.
Nucleic acid target (also called "target template")	Nucleotide sequence that you want to detect.

Table 4-1 Terms used in allelic discrimination analysis (continued)

Term	Definition
Passive reference	A dye that provides an internal reference to which the reporter dye signal is normalized during data analysis. Normalization is necessary to correct for fluorescence fluctuations caused by changes in concentration or volume. A passive reference dye is included in all Applied Biosystems real-time PCR reagent kits.
Reporter dye	The dye attached to the 5' end of a TaqMan probe.
Normalized reporter $\left(R_{n}\right)$	The normalized intensity of the reporter dye. R_{n} is calculated by dividing the intensity of the reporter dye by the intensity of the passive reference.
Unknown	The sample you want to classify as either homozygote or heterozygote.

How Allelic Discrimination Assays Work

In allelic discrimination assays, the PCR includes a specific, fluorescent, dye-labeled probe for each allele. You can use TAMRA ${ }^{\text {TM }}$ dye or TaqMan MGB labeled probes. The probes contain different fluorescent reporter dyes ($\mathrm{FAM}^{\mathrm{TM}}$ dye and VIC^{\circledR} dye) to differentiate the amplification of each allele.
Each TaqMan MGB probe contains:

- A reporter dye at the 5^{\prime} end of each probe
- VIC dye is linked to the 5^{\prime} end of the Allele 1 probe
- FAM dye is linked to the 5^{\prime} end of the Allele 2 probe
- A minor groove-binder (MGB)

This modification increases the melting temperature $\left(\mathrm{T}_{\mathrm{m}}\right)$ without increasing probe length (Afonina et al., 1997; Kutyavin et al., 1997), thereby allowing the design of shorter probes. This type of probe design results in greater differences in T_{m} values between matched and mismatched probes, which produces more accurate allelic discrimination.

- A nonfluorescent quencher (NFQ) at the 3^{\prime} end of the probe

Because the quencher does not fluoresce, real-time PCR systems can measure reporter dye contributions more accurately.

During PCR, each probe anneals specifically to complementary sequences between the forward and reverse primer sites. AmpliTaq Gold ${ }^{\circledR}$ DNA polymerase can cleave only probes that hybridize to the allele sequence. Cleavage separates the reporter dye from the quencher dye, which results in increased fluorescence by the reporter dye. Thus, the fluorescence signal(s) generated by PCR amplification indicate(s) the alleles that are present in the sample.

Mismatches Between Probe and Allele Sequences

Mismatches between a probe and allele (Figure 4-1) reduce the efficiency of probe hybridization. Furthermore, AmpliTaq Gold DNA polymerase is more likely to displace the mismatched probe rather than cleave it to release reporter dye.

Figure 4-1 Results from matches and mismatches between allele and probe sequences in allelic discrimination assays

Table 4-2 summarizes the possible results of the allelic discrimination assays example shown above.

Table 4-2 Allelic discrimination assay results

A substantial increase in...	Indicates...
VIC dye fluorescence only	homozygosity for Allele 1.
FAM dye fluorescence only	homozygosity for Allele 2.
both fluorescent signals	heterozygosity.

Purchasing an Applied Biosystems TaqMan SNP Genotyping Assay Product

TaqMan SNP Genotyping Assays

Product Description

TaqMan ${ }^{\circledR}$ SNP Genotyping Assays provide the largest collection of ready-to-use SNP assays available for human studies. All assays are designed using Applied Biosystems bioinformatics pipeline and software, as well as genomic information from Celera Genomics and public databases:

- TaqMan ${ }^{\circledR}$ Validated SNP Genotyping Assays: SNP genotyping assays which have undergone minor allele frequency (MAF) validation on two to four ethnic group populations (45 individual samples per ethnic group) and inventoried for fast availability.
- TaqMan ${ }^{\circledR}$ Coding SNP Genotyping Assays: SNP genotyping assays for the detection of informative and putative functional SNPs in gene-coding regions. These inventoried assays are functionally tested to assure quality performance.
- TaqMan ${ }^{\circledR}$ Pre-Designed SNP Genotyping Assays: Genome-wide and genomeunique in silico SNP genotyping assays. Manufactured and functionally tested upon ordering.

TaqMan SNP Genotyping Assays provide optimized assays for genotyping single nucleotide polymorphisms (SNPs). The products use the 5^{\prime} nuclease assay for amplifying and detecting specific SNP alleles in purified genomic DNA samples. Each assay allows researchers to genotype individuals for a specific SNP.

Available Products

Product
Properties

Assay Contents

About SNP Genotyping Assay Mix

To view the available TaqMan SNP Genotyping Assays (PN 4331183 and 4351379) go to:
http://www.appliedbiosystems.com
For information about ordering TaqMan SNP Genotyping Assays, see "How to Obtain Support" on page ix.

TaqMan SNP Genotyping Assays:

- Are designed and optimized to work with the TaqMan ${ }^{\circledR} 2 \times$ Universal PCR Master Mix, No AmpErase ${ }^{\circledR}$ UNG, using the same universal thermal cycling conditions. This protocol design facilitates the workflow for all throughput requirements and in any SNP genotyping study.
- The assays require only three components:
- 1 to 20 ng of purified genomic DNA sample
- $20 \times, 40 \times$, or $80 \times$ SNP Genotyping Assay Mix (specific for each polymorphism)
- TaqMan $2 \times$ Universal PCR Master Mix (with or without AmpErase UNG)
- Require only one amplification step and an endpoint reading to obtain results.

Each TaqMan SNP Genotyping Assay consists of:

- One tube containing $20 \times$, $40 \times$, or $80 \times$ SNP Genotyping Assay Mix. Concentration depends on product and scale ordered.
- CD-ROM containing assay information and PDFs of the protocol and product insert

The SNP Genotyping Assay Mix contains:

- Sequence-specific forward and reverse primers to amplify the SNP of interest
- Two TaqMan MGB probes:
- One probe labeled with VIC dye detects the Allele 1 sequence
- One probe labeled with FAM dye detects the Allele 2 sequence

The assay information file consists of:

- Genomic information about the SNP, including the chromosomal location, allele frequency (for validated assays), and context sequence
- Information about the packaging of each assay tube, including the location in the plate rack and the 2-D bar code

Custom TaqMan SNP Genotyping Assays Service

> Product If a particular SNP of interest is not available as a product on the Applied Biosystems Description Web site, you can use our Custom TaqMan ${ }^{\circledR}$ SNP Genotyping Assay Service to submit sequences. See "Custom TaqMan SNP Genotyping and Gene Expression Assays" on page 1-7 for additional details on Custom TaqMan ${ }^{\circledR}$ Assays. More information about Custom TaqMan SNP Genotyping Assays and related products, part numbers, and free software is also available at:
> To place an order, contact your Applied Biosystems representative.
> Product Each Custom TaqMan ${ }^{\circledR}$ SNP Genotyping Assay is manufactured based solely on the Properties customer's input target sequence. All information supplied by the customer and returned by Applied Biosystems to the customer is considered confidential and is treated accordingly. Visit the Applied Biosystems support web site to access tutorials on how to submit sequences to the Custom TaqMan ${ }^{\circledR}$ Gene Expression Assay Service. See "How to Obtain Support" on page ix.

TaqMan Pre-Developed Assay Reagents for Allelic Discrimination

Product
Description
TaqMan ${ }^{\circledR}$ Pre-Developed Assay Reagents for Allelic Discrimination (TaqMan ${ }^{\circledR}$ PDARs for Allelic Discrimination) are optimized assays for the discrimination of specific alleles.

TaqMan PDARs for Allelic Discrimination require only three components:

- Genomic DNA sample
- 10× Allelic Discrimination Assay Mix (specific for each polymorphism)
- $2 \times$ TaqMan ${ }^{\circledR}$ Universal PCR Master Mix

Note: Allele 1 and 2 control DNA is included with each assay, allowing each homozygote signal to be generated on each run.

For instructions on how to use TaqMan PDARs for Allelic Discrimination, refer to the Pre-Developed TaqMan ${ }^{\circledR}$ Assay Reagents Allelic Discrimination Protocol (PN 4312214).

Designing Your Own Allelic Discrimination Assay

Design and
Optimization
Steps

When you design your own allelic discrimination assays:

- Design probes and primers using Primer Express ${ }^{\circledR}$ software
- Select the appropriate reagent configuration
- Use universal thermal cycling parameters
- Use default primer and probe concentrations

IMPORTANT! These steps provide a rapid and reliable system for assay design and optimization only when used in their entirety. The system must be adopted as a whole in order to achieve the highest level of success, due to the interdependence of many of the individual components.

Conclusions From the results of thousands of assays run according to these guidelines, the following conclusion can be made:

You can use $900-\mathrm{nM}$ primers, a $200-\mathrm{nM}$ probe, and 1 to 20 ng of genomic DNA to achieve reproducible and sensitive assay results.

Probe Design Using Primer Express Software

The Primer Express software uses a set of default parameters to automatically select primer and probe sets.

The probe design guidelines for allelic discrimination assays are discussed here. After choosing probes based on the guidelines below, you design the primer. For detailed information, see the Primer Express Software Version 3.0 Getting Started Guide (PN 4362460).

TaqMan MGB Probes

The TaqMan MGB probes are two modified conventional TaqMan probes:

- One probe matches the Allele 1 sequence
- One probe matches the Allele 2 sequence

Table 4-3 below summarizes the TaqMan MGB probe features.
Table 4-3 Taqman MGB probe features

Probe	$\mathbf{5}^{\prime}$ Label	$\mathbf{3}^{\prime}$ Label	Other Features
TaqMan MGB	FAM or VIC dye	Nonfluorescent quencher	minor groove-binder

When to Use

 TaqMan MGB Probes
Allelic Discrimination Probe Design Guidelines

Applied Biosystems recommends the general use of TaqMan MGB probes for allelic discrimination assays:

- To achieve estimated T_{m} values of 65 to $67^{\circ} \mathrm{C}$ using probes shorter than 25 nucleotides.
- To obtain greater differences in T_{m} values between matched and mismatched probes than with conventional TaqMan probes.
- To obtain more precise measurements of dye contributions.

IMPORTANT! When designing probes, it is important to consider probes from both strands.

- To label allelic discrimination probes, use VIC or FAM dyes.
- Avoid probes with G residue at the 5^{\prime} end of the probe. A G residue adjacent to the reporter dye will quench the reporter fluorescence, even after cleavage.
- Select probes using Primer Express software (estimated T_{m} of 65 to $67^{\circ} \mathrm{C}$).
- Make TaqMan MGB probes as short as possible without being shorter than 13 nucleotides.
- Avoid runs of an identical nucleotide. This guideline is especially true for guanine, where runs of four or more Gs should be avoided.
- Position the polymorphic site in the central third of the probe.

Note: The polymorphic site can be shifted toward the 3^{\prime} end to meet the above guidelines, however, the site must be located more than two nucleotides upstream from the 3^{\prime} terminus.

Figure 4-2 illustrates the placement of a polymorphism in an example probe ($\mathrm{N}=$ Nucleotide).

Figure 4-2 Polymorphism placement in an example probe

Primer Design Using Primer Express Software

The Primer Express software uses a set of default parameters to automatically select primer and probe sets.

The primer design guidelines for allelic discrimination assays are discussed here. For more information, refer to the Primer Express Software Version 3.0 Getting Started Guide (PN 4362460). After selecting probes for the assay (see page 4-7), choose primers based on the guidelines below.
Note: Primer Express software is designed for universal assay conditions. Changing assay conditions or Master Mix may result in suboptimal performance.

Primer Design Guidelines

If you follow the guidelines below, the amplicons should be 50 to 150 basepairs. By limiting the parameters for amplicon design (such as amplicon size), it is possible to run all reactions with a single reaction buffer (such as TaqMan $2 \times$ Universal PCR Master Mix) and a single thermal cycling protocol.

- Avoid runs of an identical nucleotide. This guideline is especially true for guanine, where runs of four or more should be avoided.
- The T_{m} of the primers should be 58 to $60^{\circ} \mathrm{C}$.
- Keep the G/C content within 30 to 80%.
- Make sure the last five nucleotides at the 3^{\prime} end contain no more than two G / C residues.
- Place the forward and reverse primers as close as possible to the probe without overlapping it.

Selecting the Appropriate Reagent Configuration

There are several TaqMan reagent kits available for allelic discrimination assays. The reagent configuration you use depends on your particular assay.

Assays
 Containing TaqMan MGB Probes

The reagent configurations listed in Table 4-4 are recommended for allelic discrimination assays. These contain the TaqMan MGB probes.

Table 4-4 Reagent configurations for allelic discrimination assays

Product	Reagent Configuration	Part Number
TaqMan Reagents	TaqMan Pre-Developed Assay Reagents for Allelic Discrimination	Go to our web site for part numbers (Keyword: PDAR). See "How to Obtain Support" on page ix.
	TaqMan ${ }^{\circledR} 2 \times$ Universal PCR Master Mix, No AmpErase ${ }^{\circledR}$ UNG	4324018
TaqMan ${ }^{\circledR}$ SNP Genotyping Assays	TaqMan ${ }^{\circledR}$ Validated and Coding SNP Genotyping Assays	4331183
	TaqMan Pre-Designed SNP Genotyping Assays	4351379
Custom TaqMan ${ }^{\circledR}$ SNP Genotyping Assays	Custom TaqMan ${ }^{\circledR}$ SNP Genotyping Assays (Human)	Go to our web site for part numbers (Keyword: genomic assays). See "How to Obtain Support" on page ix.
	Custom TaqMan ${ }^{\circledR}$ SNP Genotyping Assays (NonHuman)	

Quantify the amount of genomic DNA in samples before using TaqMan SNP Genotyping Assays. Generate a standard curve using the DNA Kit (PN 401970) and the RNase P gene primers and probe provided in the TaqMan RNase P Detection Reagents Kit (PN 4316831).

Note: The TaqMan RNase P Detection Reagents Kit uses a TaqMan probe with TAMRA dye as the quencher.

Using the Universal Thermal Cycling Parameters

Allelic discrimination assays designed using Applied Biosystems Assay Design Guidelines can be run using the same universal thermal cycling parameters. This protocol design eliminates any optimization of the thermal cycling parameters and means that multiple assays can be run on the same plate without sacrificing performance.

Thermal Cycling

Parameters Table 4-5 Thermal cycling parameters for allelic discrimination assays using TaqMan $2 \times$ Universal PCR Master Mix

Times and Temperatures			
Initial Step		PCR (Each of 40 Cycles)	
AmpErase UNG Activation ${ }^{\text {a }}$	AmpliTaq Gold DNA Polymerase Activation	Melt	Anneal/Extend
HOLD		CYCLE	
2 min @ $50{ }^{\circ} \mathrm{C}$	$10 \mathrm{~min} @ 95^{\circ} \mathrm{C}$	$15 \mathrm{sec} @ 92^{\circ} \mathrm{C}$	$1 \mathrm{~min} @ 60^{\circ} \mathrm{C}$

a. Required only if you are using TaqMan $2 \times$ Universal PCR Master Mix with AmpErase UNG

Plus/Minus Assays

This chapter covers:

About Plus/Minus Assays Using an IPC . 5-2
Purchasing the Applied Biosystems TaqMan Exogenous IPC Reagents Kit 5-4

About Plus/Minus Assays Using an IPC

What Is a
Plus/Minus Assay?

A plus/minus assay is an endpoint assay that indicates the presence or absence of a specific target sequence in a sample. The actual amount of target is not determined.

Example

A plus/minus assay might be used to determine if the bacteria Salmonella is present in hamburger meat. The results will show if Salmonella is or is not present; the amount of bacteria is not determined.

What Is an IPC?
An internal positive control (IPC) is used in plus/minus assays to monitor the PCR. Plus/minus assays can be accomplished without an IPC, however, the IPC ensures that a failed PCR is not mistaken for a negative test result.

The IPC consists of a template and a probe that is added to each well of a reaction plate. Applied Biosystems has developed the TaqMan ${ }^{\circledR}$ Exogenous Internal Positive Control Reagents kit for use in plus/minus assays. These reagents, in conjunction with your target, identify samples that are positive or negative for a specific target sequence. The kit distinguishes between two types of negative reactions:

- Samples identified as negative because they lack the target sequence
- Samples identified as negative because of the presence of a PCR inhibitor

Note: For more detailed information, see "Purchasing the Applied Biosystems TaqMan Exogenous IPC Reagents Kit" on page 5-4.

Instruments Plus/minus assays using an IPC can be used with the following instruments:

- Applied Biosystems 7300 Real-Time PCR System (7300 System)
- Applied Biosystems 7500 Real-Time PCR System (7500 System)
- Applied Biosystems 7500 Fast Real-Time PCR System (7500 Fast System) running in Standard mode

Note: The Applied Biosystems 7900HT Fast Real-Time PCR System cannot be used for plus/minus assays using an IPC.

Note: You can run plus/minus assays on a 7500 Fast System using standard reagents; Plus/minus assays using an IPC are not supported using Fast reagents and protocols.

These instruments are used to measure the increase of reporter fluorescence following PCR. Reporter signals are normalized to the emission of a passive reference, as follows:
$R_{n(T)}=\frac{\text { Emission Intensity of Target Template Sequence }}{\text { Emission Intensity of Passive Reference }}$
$R_{n(I P C)}=\frac{\text { Emission Intensity of Internal Positive Control }}{\text { Emission Intensity of Passive Reference }}$

Chemistry Plus/minus assays using an IPC can be used with fluorogenic 5^{\prime} nuclease chemistry (also known as TaqMan reagent or probe-based chemistry). For information, see "TaqMan Probe-Based Chemistry" on page 2-3.

Note: The SYBR ${ }^{\circledR}$ Green I dye chemistry and TaqMan ${ }^{\circledR}$ Fast Universal PCR Master Mix (2X), No AmpErase ${ }^{\circledR}$ UNG, are not supported for plus/minus assays using an IPC.

Terms Used in

 Plus/Minus AnalysisTable 5-1 Terms Used in Plus/Minus Analysis

Term	Definition
Internal positive control (IPC)	A second TaqMan probe and primer set added to the plate to identify well failure to amplify. Provides a means of determining amplification failure that might give a false negative signal.
No amplification control (NAC)	A sample containing no target template and a blocked IPC (the IPC target template has been blocked by a blocking agent).
No template control (NTC)	A sample that does not contain template. Background signal is used as the negative control. Provides a means of measuring contamination that might give a false positive signal.
Nucleic acid target (also called "target template")	Nucleotide sequence that you want to detect.
Unknown sample (also called sample of interest)	The sample for which you want to determine the presence or absence of a specific target.

How Plus/Minus Assays Work

Plus/minus assays begin by aliquoting the following to each well of a plate: PCR master mix, primers, and fluorogenic probes constructed for the target nucleic acid sequence. Test samples are then added to the plate and loaded into a thermal cycler for thermal cycling.

During the PCR, the fluorogenic probes anneal specifically to the complementary target sequence between the forward and reverse primer sites on the template DNA. Then during extension, AmpliTaq Gold ${ }^{\circledR}$ DNA polymerase cleaves the hybridized probes in each sample containing the target. The cleavage of each matched probe separates the reporter dye from the quencher dye, resulting in increased fluorescence by the reporter.

After thermal cycling, the plate is run on a real-time PCR instrument, which reads the fluorescence generated during the PCR amplification. The fluorescent signals, measured by the Sequence Detection Systems (SDS) software, can determine the presence or absence of the target nucleic acid in each sample on the plate.

Incorporating an IPC

An IPC is a second TaqMan probe and primer set added to the reaction plate to detect a low-copy, constitutive nucleic acid. If a well does not exhibit amplification, the SDS software uses the positive signal from the IPC to confirm that the well failed to amplify because of a lack of template, rather than a pipetting error.

The configuration of samples on a plus/minus assay plate is slightly different when using an IPC. For plates containing an IPC, primers, probe, and template are pipetted with the target assay to all unknown wells on the plate. In addition to the NTC and unknown samples, a positive control for the IPC is also arrayed on the plate. This group of wells (IPC +) contains IPC template, IPC primers and probe, target primers and probe, but no target template.

Purchasing the Applied Biosystems TaqMan Exogenous IPC Reagents Kit

The Applied Biosystems TaqMan Exogenous Internal Positive Control Reagents kit contains a pre-optimized internal positive control (IPC) that can be spiked into samples to distinguish true target negatives from PCR failure due to inhibition.

Kit Features The kit is designed to:

- Distinguish types of negative results:
- A negative call for the target sequence and positive call for the IPC indicates that no target sequence is present.
- A negative call for the target sequence and negative call for the IPC suggests PCR inhibition.
- Avoid amplification of endogenous genes
- Permit co-amplification of the IPC and the target sequence without compromising amplification of the target sequence
- Perform optimally with the TaqMan ${ }^{\circledR} 2 \times$ Universal PCR Master Mix

Amplifying the IPC and Target in the Same Tube

By using the TaqMan Exogenous IPC Reagents, a low-copy target DNA can be amplified in the same tube with the IPC. Although the target and IPC DNAs may differ in initial copy number, the amplification efficiency of the target reaction is not compromised due to limiting concentrations of IPC primers in the PCR reaction.

In the PCR reaction, the IPC is detected using a VIC ${ }^{\circledR}$ dye-labeled probe, and the target template is detected using a FAM ${ }^{\text {TM }}$ dye labeled probe.

Endpoint Detection and Post-PCR Plate
 Read

The TaqMan Exogenous IPC Reagents are designed for endpoint (plate read) assays only. Endpoint detection collects fluorescence data after PCR is complete.

Note: To aid in troubleshooting plus/minus assays, you can use the 7500 Fast, 7500 , or 7300 Systems to perform Real-Time analysis of PCR. If using a Real-Time PCR System for PCR amplification, perform the pre-read and post-read runs separately.

Available Kits Note: The part numbers listed in Table 5-2 are for 200 reactions. See Appendix B for a list of available kit sizes. The reagent configurations listed below are recommended for plus/minus assays.

Table 5-2 Reagent configurations for plus/minus assays

Reagent Configuration	Part Number
TaqMan Exogenous Internal Positive Control Reagents with TaqMan ${ }^{\circledR} 2 \times$ Universal PCR Master Mix (with VIC dye)	4308320
TaqMan Exogenous Internal Positive Control Reagents Note: If you are using this kit, you will need to purchase one of the core reagents separately, as described below.	4308323
TaqMan	
TaqMan $2 \times$ Universal PCR Master Mix, 4304437	

Troubleshooting

This chapter covers:
Troubleshooting Quantification Assays . 6-2
Troubleshooting Allelic Discrimination Assays . 6-7

Troubleshooting Quantification Assays

Using SDS
Software to
Diagnose
Irregular Data
When you have irregular data, you can use the Sequence Detection Systems (SDS) software to diagnose some chemistry- and instrument-related problems. Table 6-1 describes how to verify the integrity of your run data and how to begin troubleshooting problems.

Table 6-1 Troubleshooting analyzed run data: quantification assays

Data Display	Analysis Criteria	Recommended Action
Raw Data Plot Displays the composite raw fluorescence signal (not normalized) for the selected wells during each cycle of PCR.	- Signal tightness and uniformity: Do the raw spectra signals from replicate groups and controls exhibit similar spectral profiles? If not, the plate or sample block could be contaminated. - Characteristic signal shape: Do the samples peak at the expected wavelengths? For example, samples containing only FAM $^{\text {™ }}$ dyelabeled TaqMan ${ }^{\circledR}$ probes should not produce raw fluorescence in the wavelength of a VIC^{\circledR} dye component. A signal present from wells that do not contain the dye could indicate that the sample, master mix, or wells contain contaminants.	- Clean the contaminated block and/or generate new samples. - Repeat the experiment.
	Characteristic signal growth: As you drag the bar through the PCR cycles, do you observe growth as expected? Absent growth curves may indicate a pipetting error (well lacks template) or no amplification.	- Be sure to mix reaction components thoroughly to produce a homogeneous solution. - Ensure pipettes are calibrated.
	Signal plateaus: Do any of the signals plateau? Signal plateaus or saturation can indicate that a well contains too much template or fluorescence. The 7900HT instrument saturates at 66,000 fluorescent units.	- Repeat sample dilutions. - Ensure pipettes are calibrated.

Table 6-1 Troubleshooting analyzed run data: quantification assays (continued)

Data Display	Analysis Criteria	Recommended Action
Multicomponent Plot Displays a plot of normalized multicomponent data from a single well of a real-time run. Displays the component dye signals that contribute to the composite signal for the well.	Correct dyes displayed: Does the plot display all dyes as expected? The presence of an unexpected dye may result from an error in detector setup, such as assigning the wrong reporter or quencher dye.	Ensure that the plate is set up and the detectors are labeled correctly.
	ROX ${ }^{\text {TM }}$ dye fluorescence level: Is the ROX dye fluorescence signal less intense than that of the reporter dyes? If not, the lack of reporter fluorescence may be caused by an absence of probe in the well (a pipetting error). A drop in the ROX dye fluorescence level can be caused by a nonhomogenous sample mix, evaporation, primer/ROX dye interaction, or improperly seated cover. Note: A slight drop in ROX dye may occur after Cycle 35. This is normal.	- Mix reaction components thoroughly to produce a homogeneous solution. - Ensure pipettes are calibrated. - Check the seal of the optical adhesive cover for leaks.
	Reporter dye fluorescence level: Is the reporter dye fluorescence signal above background? The background signal is a measure of ambient fluorescence. If a dye fails to fluoresce above the background, the well is likely missing probes labeled with the dye (well does not contain probe, PCR master mix, or both).	- Mix reaction components thoroughly to produce a homogeneous solution. - Ensure pipettes are calibrated.
	MSE Level: The MSE (mean squared error) is a mathematical representation of how accurately the multicomponented data fit the raw data. The higher the MSE value, the greater the deviation of the multicomponented data from the raw data.	Ensure that the plate is set up and the detectors are labeled correctly.

Table 6-1 Troubleshooting analyzed run data: quantification assays (continued)

Data Display	Analysis Criteria	Recommended Action
Amplification Plot Displays data from real-time runs after signal normalization and multicomponent analysis. Contains the tools for setting the baseline and threshold cycle $\left(\mathrm{C}_{\mathrm{T}}\right)$ values for the run.	Correct baseline and threshold settings: Are the baseline and threshold values set correctly?	- Identify the components of the amplification curve. Determine the cycle at which amplification first begins to be distinguishable from the noise, then set the baseline so that the endpoint is 1 to 2 cycles before this point. (Use the linear view of the amplification plot to determine baseline.) - Identify the components of the amplification curve and set the threshold so that it is: - Above the background - Below the plateaued and linear regions - Within the geometric phase of the amplification curve
	Irregular amplification: Do all samples appear to have amplified normally, with a smooth amplification plot free of sharp spikes or dips? The three phases of the amplification curve should be clearly visible in from each well.	- Ensure the instrument lamp has not exceeded 2000 hours. - Mix reaction components thoroughly to produce a homogeneous solution
	Outlying amplification: When the run data is viewed in the C_{T} vs. Well Position plot, do replicate wells amplify comparably? Wells producing C_{T} values that differ significantly from the average for the associated replicate wells may be considered outliers. If a plate produces nonuniformity between replicates, some samples on the plate may have evaporated.	Check the seal of the optical adhesive cover for leaks.

Troubleshooting Chemistry Problems

Chemistry problems are often the cause of abnormal results. For example, a curve shaped like an upside down U indicates that too much template is present. Table 6-2 describes several chemistry problems that may be encountered when running quantification assays.

Table 6-2 Troubleshooting chemistry problems: quantification assays

Observation	Possible Cause	Recommended Action
Poor amplification of target	Poor quality template	- Verify the purity of each template preparation by agarose electrophoresis, ensuring that only one product is formed. - Ensure that the $260 / 280$ ratio ≥ 1.8
	Poor RT conversion to cDNA	- Check the RNA sample for degradation. - Input RNA could be too concentrated or too dilute. Calculate serial dilutions of template RNA from original stock, then repeat RT PCR. - Ensure RT PCR setup has been performed under the appropriate conditions to avoid premature cDNA synthesis.
Poor amplification of target in multiplex assay	Control is too abundant and is outcompeting the target	Optimize the primer and probe concentrations for the target reaction. Limit primer concentrations of the more abundant control. Different primer-limited TaqMan ${ }^{\circledR}$ endogenous controls can be used for multiplex optimization with TaqMan ${ }^{\circledR}$ Gene Expression Assays. See "Primer Limiting in Multiplex Assays" on page 3-28 of this document.
	Probe degradation	Mix and aliquot the probe and primers into singleuse aliquots to prevent degradation by freezethaw cycles.
Poor amplification of target in multiplex assay when using: - TaqMan ${ }^{\circledR}$ Fast Universal PCR Master Mix (2X), No AmpErase ${ }^{\circledR}$ UNG - Default Fast thermal cycling conditions	Target is difficult to amplify	- Increase the annealing/extension temperature to $62{ }^{\circ} \mathrm{C}$. - Increase the annealing/extension time in the thermal cycler protocol to 30 seconds. - If you do not obtain acceptable performance by increasing both the annealing/extension temperature and time, assay reoptimization may be required. Refer to "Primer Limiting in Multiplex Assays" on page 3-28 of this document for more information.
Amplification of the target in the NTCs	Contamination of NTCs	- Verify that this is true amplification by inspecting the multicomponent view for cleavage of the TaqMan probe. - Repeat the assay using new components for NTC reaction mix. - Use AmpErase ${ }^{\circledR}$ UNG. - Use no-RT controls to rule out genomic contamination.

Table 6-2 Troubleshooting chemistry problems: quantification assays (continued)

Observation	Possible Cause	Recommended Action
Decrease in fluorescence of the passive reference dye	Precipitation or degradation in the TaqMan buffers	When using the TaqMan PCR Core Reagent kit, be sure to mix the tubes well.
		Use TaqMan ${ }^{\circledR} 2 \times$ Universal PCR Master Mix (PN 4304437). Be sure to mix thoroughly to produce a homogeneous solution.
		Make sure the kits have been stored properly, per instructions on the packaging, and have not expired.
	Interactions between primers and probe with the passive reference dye that cannot be compensated for by the baseline subtraction	Re-design the primers and/or probe.
Standard curve: poor slope Note: A slope value of -3.32 is equal to approximately 100% efficiency.	Assay Design Guidelines not followed	Follow guidelines precisely. Optimize assay probe concentrations.
	Incorrect dilutions	Repeat sample dilutions. Ensure pipettes are calibrated.
	Inhibitors present in the reaction	Verify extraction method and reprecipitate DNA or RNA.
	Improper reaction conditions (protocols must be followed precisely)	Follow Applied Biosystems recommended thermal profile.
Standard curve: bad correlation coefficient Note: The best correlation coefficient is 1.0.	Incorrect baseline and threshold settings	Verify settings according to the user guide specific to your system.
	Improper pipetting	Check calibration of the pipettes. Pipette more than $5 \mu \mathrm{~L}$ of sample.
	Incorrect dilutions	Repeat sample dilutions.

Troubleshooting Allelic Discrimination Assays

Troubleshooting DNA Concentration Effects
Run Data Observation: Scattering of data points
Possible Causes: Very low DNA concentrations or variable concentrations.
Figure 6-1 shows the benefits of using relatively high DNA concentrations. Using relatively high DNA concentrations yields large $\Delta \mathrm{Rn}$.

As can be seen in Figure 6-2 on page 6-8, at 1 ng , 5 ng , and 20 ng , within a DNA amount the cluster is tight and easily scorable. The data presented in Figure 6-2 was generated by running the samples at low to high concentrations. If all samples have relatively high (at least 1 ng) DNA concentration, the clusters are scorable. When samples have very low DNA concentrations, such as 0.01 and 0.1 , clusters become diffuse, making scoring difficult.

Figure 6-1 Effects of DNA concentration on $\Delta R n$

Figure 6-2 Effects of different DNA concentrations

Recommended action: Verify that all samples have relatively high concentrations.

Troubleshooting
Analyzed Run
Data

If you have irregular data, you can use the SDS software to diagnose some chemistry- and instrument-related problems. Table 6-3 is a summary of checks to verify the integrity of your run data and to help you begin troubleshooting potential problems.

Table 6-3 Troubleshooting analyzed run data: allelic discrimination assays

Data Display	Analysis Criteria	Recommended Action
Raw Data Displays the composite fluorescence signal (not normalized) for the selected wells during each cycle of the PCR.	- Signal tightness and uniformity: Do the raw spectra signals from replicate groups and controls exhibit similar spectral profiles? If not, the plate or sample block could be contaminated. - Characteristic signal shape: Do the samples peak at the expected wavelengths? - Signal plateaus: Do any of the signals plateau? Signal plateaus or saturation can indicate that a well contains too much template or fluorescence signal.	Clean the contaminated block and generate new samples. Repeat the experiment.

Formulas

Comparative C_{T} Method for Relative Quantification

Formula The amount of target, normalized to an endogenous control and relative to a calibrator, is calculated by:

$$
2^{-\Delta \Delta C_{T}}
$$

Derivation of the

The equation that describes the exponential amplification of PCR is:
Formula

$$
X_{n}=X_{o} \times\left(1+E_{X}\right)^{n}
$$

where:

- $\mathrm{x}_{\mathrm{n}}=$ number of target molecules at cycle n
- $\mathrm{x}_{\mathrm{o}}=$ initial number of target molecules
- $\mathrm{E}_{\mathrm{x}}=$ efficiency of target amplification
- $\mathrm{n}=$ number of cycles
- $X_{o}=$ initial number of target molecules

The threshold cycle $\left(\mathrm{C}_{\mathrm{T}}\right)$ indicates the fractional cycle number at which the amount of amplified target reaches a specified threshold. Thus,
$\mathrm{X}_{\mathrm{T}}=\mathrm{X}_{\mathrm{o}} \times\left(1+\mathrm{E}_{\mathrm{X}}\right)^{\mathrm{C}_{\mathrm{T}, \mathrm{x}}}=\mathrm{K}_{\mathrm{X}}$
where:

- $\mathrm{x}_{\mathrm{T}}=$ threshold number of target molecules
- $\mathrm{C}_{\mathrm{T}, \mathrm{X}}=$ threshold cycle for target amplification
- $\mathrm{K}_{\mathrm{X}}=$ constant

A similar equation for the endogenous control reaction is:
$\mathrm{R}_{\mathrm{T}}=\mathrm{R}_{\mathrm{o}} \times\left(1+\mathrm{E}_{\mathrm{R}}\right)^{\mathrm{C}_{\mathrm{T}, \mathrm{R}}}=\mathrm{K}_{\mathrm{R}}$
where:

- $\mathrm{R}_{\mathrm{T}}=$ threshold number of reference molecules
- $\mathrm{R}_{\mathrm{o}}=$ initial number of reference molecules
- $E_{R}=$ efficiency of reference amplification
- $\mathrm{C}_{\mathrm{T}, \mathrm{R}}=$ threshold cycle for reference amplification
- $\mathrm{K}_{\mathrm{R}}=$ constant

Dividing X_{T} by R_{T} yields the following expression:

$$
\frac{X_{T}}{R_{T}}=\frac{X_{o} \times\left(1+E_{X}\right)^{C_{T, x}}}{R_{o} \times\left(1+E_{R}\right)^{C_{T, R}}}=\frac{K_{X}}{K_{R}}=K
$$

The exact values of X_{T} and R_{T} depend on a number of factors, including:

- Reporter dye used in the probe
- Sequence context effects on the fluorescence properties of the probe
- Efficiency of probe cleavage
- Purity of the probe
- Setting of the fluorescence threshold.

Therefore, the constant K does not have to be equal to 1 .
Assuming efficiencies of the target and the reference are the same:

$$
\begin{aligned}
& E_{X}=E_{R}=E \\
& \quad \frac{X_{o}}{R_{o}} \times(1+E)^{C_{T, ~}-C_{T, R}}=K
\end{aligned}
$$

Or

$$
\mathrm{X}_{\mathrm{N}} \times(1+\mathrm{E})^{\Delta \mathrm{C}_{\mathrm{T}}}=\mathrm{K}
$$

where:

- $X_{N}=X_{O} / R_{O}$, the normalized amount of target
- $\Delta \mathrm{C}_{\mathrm{T}}=\mathrm{C}_{\mathrm{T}, \mathrm{X}}-\mathrm{C}_{\mathrm{T}, \mathrm{R}}$, the difference in threshold cycles for target and reference

Rearranging gives the following expression:

$$
X_{N}=K \times(1+E)^{-\Delta C_{T}}
$$

The final step is to divide the X_{N} for any sample (q) by the X_{N} for the calibrator (cb):

$$
\frac{\mathrm{X}_{\mathrm{N}, \mathrm{q}}}{\mathrm{X}_{\mathrm{N}, \mathrm{cb}}}=\frac{\mathrm{K} \times(1+\mathrm{E})^{-\Delta \mathrm{C}_{\mathrm{T}, \mathrm{q}}}}{\mathrm{~K} \times(1+\mathrm{E})^{-\Delta \mathrm{C}_{\mathrm{T}, \mathrm{cb}}}}=(1+\mathrm{E})^{-\Delta \Delta \mathrm{C}_{\mathrm{T}}}
$$

where:

- $\Delta \Delta \mathrm{C}_{\mathrm{T}}=\Delta \mathrm{C}_{\mathrm{T}, \mathrm{q}}-\Delta \mathrm{C}_{\mathrm{T}, \mathrm{cb}}$

For amplicons designed and optimized according to Applied Biosystems assay design guidelines (amplicon size $<150 \mathrm{bp}$), the efficiency is close to 1 . Therefore, the amount of target, normalized to an endogenous control and relative to a calibrator, is given by:
$2-\Delta \Delta C_{T}$

Part Numbers

This chapter covers:
Real-Time PCR Instruments B-2
Sequence Detection System Software B-3
Real-Time PCR Kits B-4
Real-Time PCR Reagent Kits B-5
Real-Time PCR RT-PCR Kits B-7
Real-Time PCR Reaction Kits (with Controls) B-8
Real-Time PCR Control Reagents B-9
Real-Time PCR Reagent Components B-10
Real-Time PCR Calibration Kits. B-11
Real-Time PCR Disposables B-12
TaqMan Pre-Developed Assay Reagents for Allelic Discrimination B-13
Custom Oligonucleotide Synthesis B-14

Real-Time PCR Instruments

Part Number	Instrument
4329002	Applied Biosystems 7900HT Fast Real-Time PCR System with Standard 384-Well Block Module and Automation Accessory
4329004	Applied Biosystems 7900HT Fast Real-Time PCR System with Standard 96-Well Block Module and Automation Accessory
4329001	Applied Biosystems 7900HT Fast Real-Time PCR System with Standard 384-Well Block Module
4329003	Applied Biosystems 7900HT Fast Real-Time PCR System with Standard 96-Well Block Module
4351405	Applied Biosystems 7900HT Fast Real-Time PCR System with Fast 96-Well Block Module
4351404	Applied Biosystems 7900HT Fast Real-Time PCR System with Fast $96-$ Well Block Module and Automation Accessory
4351412	7900HT System Fast Service Upgrade
4329007	7900HT System Automation Accessory Upgrade
4329012	7900HT TaqMan ${ }^{\circledR}$ Low Density Array Upgrade
4331406	7900HT System Standard 384-Well Block Upgrade Kit
4331405	7900HT System Standard 96-Well Block Upgrade Kit
4351101	Applied Biosystems 7300 Real-Time PCR System (with laptop computer)
4351103	Applied Biosystems 7300 Real-Time PCR System (with tower computer)
4351104	Applied Biosystems 7500 Real-Time PCR System (with laptop computer)
4351105	Applied Biosystems 7500 Real-Time PCR System (with tower computer)
4351106	Applied Biosystems 7500 Fast Real-Time PCR System (with laptop computer)
4351102	Applied Biosystems 7500 Fast Real-Time PCR System (with tower computer)
4362143	7500 Fast Real-Time PCR Upgrade Kit
4349132	ABI PRISM ${ }^{\circledR}$ HID 7000 SDS For Human Identification (with laptop computer)
4349117	ABI PRISM ${ }^{\circledR}$ HID 7000 SDS For Human Identification (with tower computer)

Sequence Detection System Software

Part Number	Software	Instrument
Sequence Detection System Software		
Contact your Applied Biosystems sales representative.	7900HT System Software v.2.2.1 or higher	Applied Biosystems 7900HT Fast Real-Time PCR System
		ABI PRISM ${ }^{\circledR} 7900$ HT Sequence Detection System
	7300/7500/7500 Fast System Software v1.3 or higher	Applied Biosystems 7300 Real-Time PCR System
		Applied Biosystems 7500 Real-Time PCR System
		Applied Biosystems 7500 Fast RealTime PCR System
Associated Applied Biosystems Software		
Part Number		Software
Contact your Applied Biosystems sales representative.	Primer Express ${ }^{\circledR}$ Software v3.0 or higher	

Real-Time PCR Kits

Part Number	Kit Description	Instrument
4307266	TaqMan ${ }^{\circledR}$ Cytokine Gene Expression Plate 1 with TaqMan $^{\circledR} 2 \times$ Universal PCR Master Mix and Control Total RNA Two MicroAmp ${ }^{\circledR}$ Optical 96-Well Reaction Plates pre-loaded with TaqMan primers and probes for 12 human cytokine targets (replicates of eight) and the 18 S Ribosomal RNA endogenous control (in all 96 wells). TaqMan primer and probe concentrations are optimized for multiplex PCR utilizing FAM ${ }^{\text {TM }}$ and VIC ${ }^{\circledR}$ dyes. Configuration includes TaqMan ${ }^{\circledR} 2 \times$ Universal PCR Master Mix, MicroAmp Optical Caps, Control Total RNA (Human), and Protocol.	Applied Biosystems 7900HT Fast Real-Time PCR System, Applied Biosystems 7300/7500 Real-Time PCR System
4307265	TaqMan ${ }^{\circledR}$ Cytokine Gene Expression Plate 1 with TaqMan ${ }^{\circledR} 2 \times$ Universal PCR Master Mix Two MicroAmp Optical 96-Well Reaction Plates pre-loaded with TaqMan primers and probes for 12 human cytokine targets (replicates of eight) and the 18 S Ribosomal RNA endogenous control (in all 96 wells). TaqMan primer and probe concentrations are optimized for multiplex PCR utilizing FAM and VIC dyes. Configuration includes TaqMan ${ }^{\circledR} 2 \times$ Universal PCR Master Mix and MicroAmp Optical Caps.	Applied Biosystems 7900HT Fast Real-Time PCR System, Applied Biosystems 7300/7500 Real-Time PCR System
4306744	TaqMan ${ }^{\circledR}$ Cytokine Gene Expression Plate 1 Protocol	-
4309920	TaqMan ${ }^{\circledR}$ Human Endogenous Control Plate with TaqMan ${ }^{\circledR} 2 \times$ Universal PCR Master Mix and Control Total RNA Two MicroAmp Optical 96-Well Reaction Plates pre-loaded with TaqMan primers and probes for 11 human endogenous control targets and an internal positive control (IPC) in replicates of eight. TaqMan primer and probe concentrations are optimized for $50 \mu \mathrm{l}$ reactions and utilize VIC dye. Configuration includes TaqMan ${ }^{\circledR} 2 \times$ Universal PCR Master Mix, MicroAmp Optical Caps, Control Total RNA (Human), and Protocol.	Applied Biosystems 7900HT Fast Real-Time PCR System, Applied Biosystems 7300/7500 Real-Time PCR System
4309921	TaqMan ${ }^{\circledR}$ Human Endogenous Control Plate with TaqMan ${ }^{\circledR} 2 \times$ Universal PCR Master Mix Two MicroAmp Optical 96-Well Reaction Plates pre-loaded with TaqMan primers and probes for 11 human endogenous control targets and an internal positive control (IPC) in replicates of eight. TaqMan primer and probe concentrations are optimized for $50 \mu \mathrm{l}$ reactions and utilize VIC dye. Configuration includes TaqMan ${ }^{\circledR} 2 \times$ Universal PCR Master Mix and MicroAmp Optical Caps.	Applied Biosystems 7900HT Fast Real-Time PCR System, Applied Biosystems 7300/7500 Real-Time PCR System
4308134	TaqMan ${ }^{\circledR}$ Human Endogenous Control Plate Protocol	-
4352407	Fast Reagents Starter Kit Three tubs containing TaqMan ${ }^{\circledR} 2$ X Universal PCR Master Mix, Control Total RNA (Human), and 18 S TaqMan ${ }^{\circledR}$ Gene Expression Assay.	Applied Biosystems 7500 Fast Real-Time PCR System

Real-Time PCR Reagent Kits

Part Number	Kit Description	Number of Reactions
4352042	TaqMan ${ }^{\circledR}$ Fast Universal PCR Master Mix (2X), No AmpErase ${ }^{\circledR}$ UNG	250
4304437	TaqMan ${ }^{\circledR} 2 \times$ Universal PCR Master Mix Supplied at a $2 \times$ concentration. The mix is optimized for TaqMan ${ }^{\circledR}$ reactions and contains AmpliTaq Gold ${ }^{\circledR}$ DNA Polymerase, AmpErase ${ }^{\circledR}$ UNG, dNTPs with dUTP, Passive Reference 1, and optimized buffer components. One $5-\mathrm{mL}$ vial in each box.	200
4318157	TaqMan ${ }^{\circledR} 2 \times$ Universal PCR Master Mix Ten $5-\mathrm{mL}$ vials in each box.	2000
4305719	TaqMan ${ }^{\circledR} 2 \times$ Universal PCR Master Mix 10-Pack Ten boxes of PN 4304437.	2000
4326708	50 mL , TaqMan ${ }^{\circledR} 2 \times$ Universal PCR Master Mix	2000
4324018	TaqMan ${ }^{\circledR} 2 \times$ Universal PCR Master Mix, No AmpErase ${ }^{\circledR}$ UNG Supplied at a $2 \times$ concentration. The mix is optimized for TaqMan ${ }^{\circledR}$ reactions and contains AmpliTaq ${ }^{\circledR}$ Gold DNA Polymerase, dNTPs with dUTP, Passive Reference 1, and optimized buffer components. One 5-mL vial in each box.	200
4324020	TaqMan ${ }^{\circledR} 2 \times$ Universal PCR Master Mix, No AmpErase ${ }^{\circledR}$ UNG 10Pack Ten 5-mL vials in each box.	2000
4326614	TaqMan ${ }^{\circledR} 2 \times$ Universal PCR Master Mix, No AmpErase ${ }^{\circledR}$ UNG 50 ml	2000
4304449	TaqMan ${ }^{\text {® }} 2 \times$ Universal PCR Master Mix Protocol	-
N808-0228	TaqMan ${ }^{\circledR}$ PCR Core Reagents Kit 250 Units AmpliTaq ${ }^{\circledR}$ Gold DNA Polymerase, 100 Units AmpErase ${ }^{\circledR}$ UNG, dUTP, dATP, dCTP, dGTP, $10 \times$ TaqMan Buffer A, 25 mM MgCl 2 Solution.	200
4304439	TaqMan ${ }^{\circledR} 1000$ RXN PCR Core Reagents 1250 Units AmpliTaq ${ }^{\circledR}$ Gold DNA Polymerase, 500 Units AmpErase ${ }^{\circledR}$ UNG, dUTP, dATP, dCTP, dGTP, $10 \times$ TaqMan Buffer A, 25 mM MgCl 2 Solution.	1000
402930	TaqMan ${ }^{\circledR}$ PCR Core Reagent Kit 10-Pack Ten of PN N808-0228.	2000
402823	TaqMan ${ }^{\circledR}$ PCR Reagent Kit Protocol	-
4304886	SYBR ${ }^{\circledR}$ Green PCR Core Reagents 250 Units AmpliTaq ${ }^{\circledR}$ Gold DNA Polymerase, 100 Units AmpErase ${ }^{\circledR}$ UNG, dNTP Mix with dUTP, 10× SYBR Green PCR Buffer, 25 mM MgCl 2 Solution.	200

4306736	10-Pack, SYBR ${ }^{\circledR}$ Green PCR Core Reagents Ten of PN 4304886.	2000
4304965	SYBR ${ }^{\circledR}$ Green PCR Core Reagents Protocol	-
4309155	SYBR ${ }^{\circledR}$ Green PCR Master Mix Supplied at a $2 \times$ concentration. The mix is optimized for SYBR ${ }^{\circledR}$ Green reagent reactions and contains SYBR $^{\circledR}$ Green 1 dye, AmpliTaq ${ }^{\circledR}$ Gold DNA Polymerase, dNTPs with dUTP, Passive Reference 1, and optimized buffer components. One 5-mL vial in each box.	200
4312704	SYBR ${ }^{\circledR}$ Green PCR Master Mix 10-Pack Ten of PN 4309155.	2000
4334973	SYBR ${ }^{\circledR}$ Green PCR Master Mix	2000
4334973	SYBR ${ }^{\circledR}$ Green PCR Master Mix, 50-mL	2000
4344463	SYBR ${ }^{\circledR}$ Green PCR Master Mix, 1-mL	40
4310251	SYBR ${ }^{\circledR}$ Green PCR Master Mix Protocol Combined protocol for SYBR ${ }^{\circledR}$ Green PCR Master Mix and SYBR ${ }^{\circledR}$ Green RT-PCR Reagents.	-

Real-Time PCR RT-PCR Kits

Part Number	Kit Description	Number of $50-\mu \mathrm{L}$ Reactions
4309169	TaqMan ${ }^{\circledR}$ One-Step RT-PCR Master Mix Reagents Kit Vial1: AmpliTaq ${ }^{\circledR}$ Gold DNA Polymerase mix (2X) is optimized for TaqMan ${ }^{\circledR}$ reactions and contains AmpliTaq ${ }^{\circledR}$ Gold DNA Polymerase, dNTPs with dUTP, Passive Reference 1, and optimized buffer components. Vial 2: RT enzyme mix (40X) contains MultiScribe ${ }^{\text {TM }}$ Reverse Transcriptase and RNase Inhibitor.	200
4313803	TaqMan ${ }^{\circledR}$ One-Step RT-PCR Master Mix Reagents Kit 10-Pack Ten of PN 4309169	2000
4310299	TaqMan ${ }^{\circledR}$ One-Step RT-PCR Master Mix Reagents Kit Protocol	-
N808-0232	TaqMan ${ }^{\circledR}$ Gold RT-PCR Reagents without controls TaqMan ${ }^{\circledR}$ PCR Core Reagents Kit (N808-0228), TaqMan ${ }^{\circledR}$ Reverse Transcriptase Reagents (N808-0234).	200
4304133	TaqMan ${ }^{\circledR}$ Gold RT-PCR Reagents without controls 10-Pack Ten of PN N808-0232	2000
402876	TaqMan ${ }^{\circledR}$ Gold RT-PCR Protocol	-
N808-0234	TaqMan ${ }^{\circledR}$ Reverse Transcriptase Reagents MultiScribe ${ }^{\text {TM }}$ Reverse Transcriptase, RNase Inhibitor, dNTP Mixture, Oligo $\mathrm{d}(\mathrm{T})_{16}$, Random Hexamers, $10 \times$ RT Buffer, MgCl_{2} Solution.	200
4304134	TaqMan ${ }^{\circledR}$ Reverse Transcriptase Reagents 10-Pack Ten of PN N808-0234	2000
N808-0236	TaqMan ${ }^{\circledR}$ EZ RT-PCR Core Reagents 1000 Units rTth DNA Polymerase, 100 Units AmpErase ${ }^{\circledR}$ UNG, dUTP, dATP, dCTP, dGTP, $5 \times$ TaqMan ${ }^{\circledR}$ EZ Buffer, $\left.25 \mathrm{mM} \mathrm{Mn(OAc)}\right)_{2}$.	200
403028	TaqMan ${ }^{\circledR}$ EZ RT-PCR Core Reagents 10-Pack Ten of PN N808-0236	2000
402877	TaqMan ${ }^{\circledR}$ EZ RT-PCR Kit Protocol	-
4310179	SYBR ${ }^{\circledR}$ Green RT-PCR Reagents SYBR ${ }^{\circledR}$ Green PCR Master Mix (4309155), TaqMan ${ }^{\circledR}$ Reverse Transcriptase Reagents (N808-0234).	200
4310251	SYBR ${ }^{\circledR}$ Green PCR Master Mix Protocol Combined protocol for SYBR ${ }^{\circledR}$ Green PCR Master Mix and SYBR ${ }^{\circledR}$ Green RT-PCR Reagents.	-
4322171	High-Capacity cDNA Archive Kit Random primers, Optimized RT Buffer, dNTPs and MultiScribe ${ }^{T M}$ MULV/RNase Inhibitor mix for the conversion of up to $10 \mu \mathrm{~g}$ of total RNA in a single $100-\mu \mathrm{L}$ reaction to single-stranded cDNA.	200
4322169	High-Capacity cDNA Archive Kit Protocol	-

Real-Time PCR Reaction Kits (with Controls)

Part Number	Kit Description	Number of Reactions
N808-0230	TaqMan ${ }^{\circledR}$ PCR Reagent Kit TaqMan ${ }^{\circledR}$ PCR Core Reagents Kit, β-actin control reagents, and Protocol.	200
N808-0233	TaqMan ${ }^{\circledR}$ Gold RT-PCR Reagents with controls TaqMan ${ }^{\circledR}$ PCR Core Reagent Kit, TaqMan ${ }^{\circledR}$ Reverse Transcriptase Reagents, TaqMan ${ }^{\circledR}$ GAPDH Control Reagents, and Protocol.	200
N808-0235	TaqMan ${ }^{\circledR}$ EZ RT-PCR Kit 1000 Units rTth DNA Polymerase, 100 Units AmpErase ${ }^{\circledR}$ UNG, dUTP, dATP, dCTP, dGTP, TaqMan ${ }^{\circledR}$ EZ Buffer, $\mathrm{Mn}(\mathrm{OAc})_{2}, 100$ GAPDH control reactions, and Protocol.	200
N808-0236	TaqMan ${ }^{\circledR}$ EZ RT-PCR Core Reagents Without Controls	200
403028	TaqMan ${ }^{\circledR}$ EZ-RT-PCR Core Reagents, 10-pack	2000
4352407	TaqMan ${ }^{\circledR}$ Fast Reagents Starter Kit One tube TaqMan ${ }^{\circledR}$ Fast Universal PCR Master Mix (2X), No AmpErase ${ }^{\circledR}$ UNG, one tube Human Control cDNA, one tube $20 \times 18 \mathrm{~s}$ rRNA.	500

Real-Time PCR Control Reagents

Part Number	Kit Description	Number of Reactions
4308329	TaqMan ${ }^{\circledR}$ Ribosomal RNA Control Reagents (VIC ${ }^{\circledR}$ Dye) Human Control RNA, rRNA Probe (VIC ${ }^{\circledR}$ dye), rRNA Forward Primer, and rRNA Reverse Primer.	1000
4308310	TaqMan ${ }^{\circledR}$ Ribosomal RNA Control Reagents Protocol (VIC ${ }^{\circledR}$ Dye)	-
4316844	TaqMan ${ }^{\circledR}$ RNase P Control Reagents (VIC ${ }^{\circledR}$ Dye) 20× primer and probe (VIC ${ }^{\circledR}$ dye) mix and Human Genomic Control DNA.	1000
4308313	TaqMan ${ }^{\circledR}$ Rodent GAPDH Control Reagents (VIC ${ }^{\circledR}$ Dye) Rodent Control RNA, rodent GAPDH Probe (VIC ${ }^{\circledR}$ dye), rodent GAPDH Forward Primer, and rodent GAPDH Reverse Primer.	1000
4308318	TaqMan ${ }^{\circledR}$ Rodent GAPDH Control Reagents Protocol (VIC ${ }^{\circledR}$ Dye)	-
402869	TaqMan ${ }^{\circledR}$ GAPDH Control Reagents (Human) Human Control RNA, GAPDH Probe (JOE ${ }^{\text {TM }}$ dye), GAPDH Forward Primer, and GAPDH Reverse Primer.	100
401846	TaqMan ${ }^{\circledR} \beta$-actin Detection Reagents	100
401970	TaqMan ${ }^{\circledR}$ DNA Template Reagents	-
4308323	TaqMan ${ }^{\circledR}$ Exogenous Internal Positive Control Reagents (VIC ${ }^{\circledR}$ Dye) $10 \times$ exogenous IPC primer and probe (VIC ${ }^{\circledR}$ dye) mix, $10 \times$ exogenous IPC blocking reagent, and $50 \times$ exogenous IPC target. Kit represents an IPC assay (optimized with TaqMan ${ }^{\circledR} 2 \times$ Universal PCR Master Mix) to be used with custom + / - assays.	200
4308321	5-Pack, TaqMan ${ }^{\circledR}$ Exogenous IPC Reagents (VIC ${ }^{\circledR}$ Dye) Five of PN 4308323	1000
4308320	TaqMan ${ }^{\circledR}$ Exogenous Internal Positive Control Reagents (VIC ${ }^{\circledR}$ Dye) with TaqMan ${ }^{\circledR} 2 \times$ Universal PCR Master Mix (PN 4308323 and 4304437)	200
4308335	TaqMan ${ }^{\circledR}$ Exogenous Internal Positive Control Reagents Protocol (VIC ${ }^{\circledR}$ Dye)	-
4316831	TaqMan ${ }^{\circledR}$ RNase P Detection Reagents Kit 20× primer and probe (FAM ${ }^{\text {TM }}$ dye) mix and Human Genomic Control DNA.	100
4310982	TaqMan ${ }^{\circledR}$ RNase P Instrument Verification Plate One ABI PRISM ${ }^{\circledR} 96$-Well Optical Reaction Plate pre-loaded and sealed with TaqMan ${ }^{\circledR}$ primers and probe to detect and quantitate genomic copies of the human RNase P gene.	One 96-Well Plate
4351979	TaqMan ${ }^{\circledR}$ RNase P Fast 96-Well Instrument Verification Plate One Optical 96-Well Fast Thermal Cycling Plate with Barcode (code 128) preloaded and sealed with TaqMan ${ }^{\circledR}$ primers and probe to detect and quantitate genomic copies of the human RNase P gene.	One Optical 96-Well Fast Plate

4323306	TaqMan ${ }^{\circledR}$ RNase P 384-Well Instrument Verification Plate One ABI PRISM ${ }^{\circledR} 384$-Well Optical Reaction Plate preloaded and sealed with complete TaqMan ${ }^{\circledR}$ primers and probe to detect and quantitate genomic copies of the human RNase P gene.	One 384-Well Plate

Real-Time PCR Reagent Components

Part Number	Description	Quantity
4304441	TaqMan ${ }^{\circledR} 1000$ RXN Gold with Buffer A Pack 1250 Units AmpliTaq ${ }^{\circledR}$ Gold DNA Polymerase, $10 \times$ TaqMan ${ }^{\circledR}$ Buffer A, $25 \mathrm{mM} \mathrm{MgCl}{ }_{2}$ Solution.	1000 Reactions
4305822	Sequence Detection Systems Spectral Calibration Kit	-
4311235	MultiScribe ${ }^{\text {TM }}$ Reverse Transcriptase, $100-\mu \mathrm{L}$ (400 Rxn @ $10 \mu \mathrm{~L}$ each, 40 Rxn @ $100 \mu \mathrm{~L}$)	5000 Units
N808-0119	RNase Inhibitor	2000 Units
N808-0260	dNTP Mixture (10 mM)	1 mL
N808-0128	Oligo d(T)16 (50 $\mu \mathrm{M}$)	0.1 mL
N808-0127	Random Hexamers ($50 \mu \mathrm{M}$)	0.1 mL
4307281	Control Total RNA (Human)	$\begin{gathered} 100 \mu \mathrm{~L} \\ (50 \mathrm{ng} / \mu \mathrm{L}) \end{gathered}$
N808-0096	AmpErase ${ }^{\circledR}$ Uracil N -glycosylase (UNG)	$\begin{gathered} 100 \mu \mathrm{~L} \\ (1 \mathrm{unit} / \mu \mathrm{L}) \end{gathered}$
4312660	Control Total DNA (Human)	2 tubes, each $100 \mu \mathrm{~L}$ (10 ng/ $\mu \mathrm{L}$)
402929	20\% Glycerol Solution, Molecular Biology Grade	100 mL

Real-Time PCR Calibration Kits

Part Number	Kit Description	Quantity
4305822	Sequence Detection Systems Spectral Calibration Kit	-
4323977	Sequence Detection Systems 384-Well Spectral Calibration Kit Two ABI Prism ${ }^{\circledR} 384-$ Well Optical Reaction Plates. One preloaded and sealed Background plate and one preloaded and sealed Spectral Calibration plate with eight separate dye standards (FAM ${ }^{\text {TM }}, \mathrm{JOE}^{\text {TM }}$, NED $^{\text {TM }}$, ROX $^{\text {TM }}$, SYBR ${ }^{\circledR}$ Green, TAMRA ${ }^{\text {TM }}$, TET ${ }^{\text {TM }}$, and VIC ${ }^{\circledR}$ dyes).	Two 384-Well Plates
4351653	7900HT System Fast 96-Well Spectral Calibration Kit Three Optical 96-Well Fast Thermal Cycling Plates with Barcode (code 128): one preloaded and sealed Background plate and two preloaded and sealed Spectral Calibration plates containing eight separate dye standards (FAM ${ }^{\text {™ }}$, $J^{\prime} E^{\text {TM }}$, NED ${ }^{\text {TM }}$, ROX $^{\text {TM }}$, SYBR ${ }^{\circledR}$ Green, TAMRA ${ }^{\text {TM }}$, TET ${ }^{\text {TM }}$, and VIC ${ }^{\circledR}$ dyes).	Three Optical 96-Well Fast Plates
4328895	ABI PRISM ${ }^{\circledR} 7000$ Sequence Detection Systems Spectral Calibration Kit Eight ABI PRISM ${ }^{\circledR}$ Optical 96-Well Reaction Plates. One preloaded and sealed Background plate and seven sealed and preloaded Spectral Calibration plates containing seven separate dye standards ($\mathrm{FAM}^{\mathrm{TM}}, \mathrm{JOE}^{\mathrm{TM}}$, NED $^{\text {M }}$, ROX $^{\text {M }}$, SYBR $^{\circledR}$ Green, TAMRA ${ }^{\text {™ }}$, and VIC $^{\circledR}$ dyes).	Eight Optical 96-Well Reaction Plates
4350584	7300/7500 Real-Time PCR Systems TaqMan ${ }^{\circledR}$ RNase P 96-Well Instrument Verification Plate	1 kit
4348187	Applied Biosystems 7300 Real-Time PCR System Spectral Calibration Kit Nine Optical $96-$ Well Reaction Plates. One preloaded and sealed Background plate, seven preloaded and sealed Pure Dye plates containing seven different dye standards (FAM ${ }^{\text {TM }}, \mathrm{JOE}^{\text {M }}$, NED $^{\text {M }}$, ROX ${ }^{\text {™ }}$, SYBR ${ }^{\circledR}$ Green, TAMRA ${ }^{\text {TM }}$, and VIC^{\circledR} dyes), and one preloaded and sealed ROI Calibration plate.	Nine Optical 96-Well Reaction Plate
4349180	Applied Biosystems 7500 Real-Time PCR System Spectral Calibration Kit I Nine Optical $96-$ Well Reaction Plates. One preloaded and sealed Background plate, seven preloaded and sealed Pure Dye plates containing ten different dye standards ($\mathrm{FAM}^{\top M}$, $\mathrm{JOE}^{\text {M }}$, NED $^{\text {TM }}, \mathrm{ROX}^{\text {TM }}$, $\mathrm{SYBR}^{\circledR}$ Green, TAMRA ${ }^{\text {TM }}$, and VIC $^{\circledR}$ dyes), and one preloaded and sealed ROI Calibration plate.	Nine Optical 96-Well Reaction Plates
4351151	Applied Biosystems 7500 Real-Time PCR System Spectral Calibration Kit II Five Optical 96-Well Reaction Plates. One preloaded and sealed Background plate, three preloaded and sealed Pure Dye plates containing ten different dye standards (CY ${ }^{\text {TM }}, ~ C Y 55^{\text {TM }}$, and TEXAS RED ${ }^{\circledR}$ dyes), and one preloaded and sealed ROI Calibration plate.	Five Optical 96-Well Reaction Plates
4360788	Applied Biosystems 7500 Fast Real-Time PCR System Spectral Calibration Kit I Twelve Optical 96-Well Fast Thermal Cycling Plates. One preloaded and sealed Background plate, ten preloaded and sealed Pure Dye plates containing ten different dye standards (CY3 ${ }^{\text {TM }}, \mathrm{CYS}^{T M}$, $\mathrm{FAM}^{\top M}$, $\mathrm{JOE}^{\text {TM }}$, NED ${ }^{\text {TM }}$, ROX ${ }^{\text {TM }}$, SYBR ${ }^{\circledR}$ Green, TAMRA ${ }^{\text {TM }}$, TEXAS RED ${ }^{\circledR}$, and $V^{\text {VI }}{ }^{\circledR}$ dyes), and one preloaded and sealed ROI Calibration plate.	Twelve Optical 96-Well Fast Plates

4362201	Applied Biosystems 7500 Fast Real-Time PCR System Spectral Calibration Kit II	
4351979	TaqMan $^{\circledR}$ RNase P Chemistry Installation Kit (7500 Fast System)	

Real-Time PCR Disposables

Part Number	Item	Quantity
4313663	ABI PRISM ${ }^{\circledR}$ Optical Adhesive Cover Starter Kit ABI PRISM ${ }^{\circledR}$ Optical Adhesive Covers (quantity 20), Applicator (quantity 1), ABI PRISM ${ }^{\circledR}$ Optical Cover Compression Pad (quantity 1)	20 Covers/Pkg
4311971	ABI PRISM ${ }^{\circledR}$ Optical Adhesive Covers	100 Covers/Pkg
4314320	ABI PRISM ${ }^{\circledR}$ Optical Adhesive Covers and ABI PRISM ${ }^{\circledR}$ 96-Well Optical Reaction Plate with Barcode (code 128) PN 4311971 and $5 \times$ ABI PRISM ${ }^{\circledR}$ 96-Well Optical Reaction Plates (PN 4306737)	100 Covers 100 Plates/Pkg
4360954	Optical Adhesive Covers	25 Covers/Pkg
4312639	ABI Prism ${ }^{\circledR}$ Optical Cover Compression Pads	5 Pads/Pkg
4309849	ABI PRISM ${ }^{\circledR}$ 384-Well Clear Optical Reaction Plate with Barcode (code 128)	50 Plates/Pkg
4326270	ABI PRISM ${ }^{\circledR}$ 384-Well Clear Optical Reaction Plate with Barcode (code 128),10-Pack 10× (PN 4309849) ABI PRISM ${ }^{\circledR}$ 384-Well Clear Optical Reaction Plate with Barcode (code 128).	500 Plates/Pkg
4306737	ABI Prism ${ }^{\circledR} 96-$ Well Optical Reaction Plate with Barcode (code 128)	20 Plates/Pkg
4326659	ABI PrISM ${ }^{\circledR} 96$-Well Optical Reaction Plate with Barcode (code 128), 25-Pack 25× (PN 4306737) ABI PRISM ${ }^{\circledR}$ 96-Well Optical Reaction Plate with Barcode (code 128).	500 Plates/Pkg
4323032	ABI PRISM ${ }^{\circledR}$ Optical Caps, 8 Caps/Strip Flat Caps.	300 Strips/Pkg 2400 Caps/Pkg
4330015	ABI PrISM ${ }^{\circledR}$ Cap Installing Tool Used for removing MicroAmp ${ }^{\circledR}$ Caps or ABI Prism ${ }^{\circledR}$ Optical Caps from the MicroAmp ${ }^{\circledR}$ plate or ABI PRISM ${ }^{\circledR}$ 96-Well Optical Reaction Plate and Tray/Retainer Assemblies.	One/Pkg

4333292	ABI PRISM ${ }^{\circledR}$ Snap-On Compression Pads Snap-On Compression Pad is a compliant cover bonded to a metal frame, and is designed for use on the Applied Biosystems 7900HT Fast Real-Time PCR System when using the available automation accessory with 96-well plates.	$9 /$ Pkg
4333183	Adhesive Seal Applicators	$5 /$ Pkg
N801-0560	MicroAmp ${ }^{\circledR}$ Optical 96-Well Reaction Plate Not Barcoded.	10 Plates/Pkg
403012	MicroAmp ${ }^{\circledR}$ Optical 96-Well Reaction Plates and ABI Prism ${ }^{\circledR}$ Optical Caps PN 4306737 and 4323032.	2400 Paps/Pkg
4312063	MicroAmp ${ }^{\circledR}$ Splash Free Support Base for 96-Well Reaction Plates	10 Bases/Pkg
4346906	Optical 96-Well Fast Thermal Cycling Plate with Barcode (code 128)	20 plates
4346907	Optical 96-Well Fast Thermal Cycling Plate without Barcode	20 plates

TaqMan Pre-Developed Assay Reagents for Allelic Discrimination

Part Number	TaqMan ${ }^{\text {® PDAR Description }}$	Quantity (Number of Reactions)
4312561	CYP2C19*2	400 reactions
4312562	CYP2C19*3	400 reactions
4312559	CYP2C9*2	400 reactions
4312560	CYP2C9*3	400 reactions
4312554	CYP2D6*3	400 reactions
4312555	CYP2D6*4	400 reactions
4312556	CYP2D6*6	400 reactions
4312557	CYP2D6*7	CYP2D6*8

Custom Oligonucleotide Synthesis

Part Number	Item	Delivery Time ${ }^{\text {a }}$
4316034	TaqMan ${ }^{\circledR}$ MGB Probe 6,000 pmoles 5^{\prime}-Fluorescent dye label: 6-FAM ${ }^{T M}, \mathrm{VIC}^{\circledR}, \mathrm{NED}^{T M}$, or $\mathrm{TET}^{T M}$ dyes.	6 to 7 days
4316033	TaqMan ${ }^{\circledR}$ MGB Probe 20,000 pmoles 5^{\prime}-Fluorescent dye label: 6-FAM ${ }^{T M}, \mathrm{VIC}^{\circledR}$, NED $^{T M}$, or $\mathrm{TET}^{T M}$ dyes.	6 to 7 days
4316032	TaqMan ${ }^{\circledR}$ MGB Probe 50,000 pmoles 5^{\prime}-Fluorescent dye label: 6-FAM ${ }^{T M}, \mathrm{VIC}^{\circledR}$, NED $^{\top M}$, or $\mathrm{TET}^{T M}$ dyes.	6 to 7 days
450025	TaqMan ${ }^{\circledR}$ TAMRA $^{\text {TM }}$ Probe 6,000 pmoles 5^{\prime}-Fluorescent dye label: $6-\mathrm{FAM}^{\top M}, \mathrm{VIC}^{\circledR}$, or $\mathrm{TET}^{\text {TM }}$ dyes.	4 to 5 days
450024	TaqMan ${ }^{\circledR}$ TAMRA ${ }^{\text {TM }}$ Probe 20,000 pmoles 5^{\prime}-Fluorescent dye label: 6-FAM ${ }^{\text {TM }}$, VIC $^{\circledR}$, or TET $^{\text {TM }}$ dyes.	4 to 5 days
450003	TaqMan ${ }^{\circledR}$ TAMRA ${ }^{\text {TM }}$ Probe 50,000 pmoles 5^{\prime}-Fluorescent dye label: 6-FAM ${ }^{\text {TM }}$, VIC $^{\circledR}$, or TET $^{\text {TM }}$ dyes.	4 to 5 days
4304970	Sequence Detection Primers: 10,000 pmoles Minimum 4,000 pmoles purified for sequence detection.	3 days
4304971	Sequence Detection Primers: 80,000 pmoles Minimum 40,000 pmoles purified for sequence detection.	4 days
4304972	Sequence Detection Primers: 130,000 pmoles Minimum 130,000 pmoles purified for sequence detection.	4 days

a. For custom oligonucleotide synthesis, consider the following:

- Delivery includes only business week days; orders to be received by email or online web ordering before 10:00 a.m. PST/PDT.
- Orders received by fax are entered into the order system on the next business day.
- Quantities are based on an average 23-mer oligo length.

Contact information:

- To order online: http://store.appliedbiosystems.com
- To order by email: OligosUS@appliedbiosystems.com

References

Afonina, I., Zivarts, M., Kutyavin, I., et al. 1997. Efficient priming of PCR with short oligonucleotides conjugated to a minor groove binder. Nucleic Acids Res. 25:2657-2660.

Collins, M. L., Zayati, C., Detmar, J. J., Daly, B., Kolberg, J. A. Cha, T. A., Irvine, B. D. Tucker, J., and Urdea, M. S. 1995. Preparation and characterization of RNA standards for use in quantitative branched DNA hybridization assays. Anal. Biochem. Mar 20 226:120-129.

Förster, V. T. 1948. Zwischenmolekulare Energiewanderung und Fluoreszenz. Ann. Physics (Leipzig) 2:55-75.

Higuchi, R., Dollinger, G., Walsh, P.S., and Griffith, R. 1992. Simultaneous amplification and detection of specific DNA sequences. Biotechnology 10:413-417.

Higuchi, R., Fockler, C., Dollinger, G., and Watson, R. 1993. Kinetic PCR:Real time monitoring of DNA amplification reactions. Biotechnology 11:1026-1030.

Kutyavin, I.V., Lukhtanov, E.A., Gamper, H.B., and Meyer, R.B. 1997. Oligonucleotides with conjugated dihydropyrroloindole tripeptides: base composition and backbone effects on hybridization. Nucleic Acids Res. 25:3718-3723.

Kwok, S. and Higuchi, R. 1989. Avoiding false positives with PCR. Nature 339:237-238.

Lee, L. G., Connell, C. R., and Block, W. 1993. Allelic discrimination by nicktranslation PCR with fluorogenic probes. Nucleic Acids Res. 21:3761-3766.
Livak, K.J., and Schmittgen, T.D. 2001. Analysis of Relative Gene Expression Data Using Real-Time Quantitative PCR and the $2^{-\Delta \Delta \mathrm{C}_{\mathrm{T}}}$ Method. Methods 25:402-408.
Livak, K.J., Flood, S.J.A., Marmaro, J.,Guisti W., Deetz, K. 1995. Oligonucleotides with fluorescent dyes at opposite ends provide a quenched probe system useful for detecting PCR product and nucleic acid hybridization. PCR Methods Appl. 4:357-62.
Livak, K.J., Flood, S.J.A., Marmaro, J., and Mullah, K.B., inventors; Perkin-Elmer Corporation (Foster City, CA), assignee. 2 Mar. 1999. Hybridization assay using selfquenching fluorescence probe. United States patent 5,876,930.

Livak, K.J., Marmaro, J., and Todd, J.A. 1995. Towards fully automated genomewide polymorphism screening [letter]. Nat. Genet. 9:341-342.
Longo, M.C., Berninger, M.S., and Hartley, J.L. 1990. Use of uracil DNA glycosylase to control carry-over contamination in polymerase chain reactions. Gene 93:125-128.

Index

Numerics

3' primer end, and amplicon sites 3-12
5^{\prime} nuclease quantification assays 3-22
5^{\prime} ' probe end, and amplicon sites 3-12

A

absolute quantification
standard curve 3-53
troubleshooting 6-7
absolute standard curve, performing 3-53
allelic discrimination assay
category 1-2
conclusions 4-7
described 4-2
designing your own 4-6
guidelines for probes 4-7
how it works 4-3
instruments 4-2
mismatches 4-3
optimizing 4-6
Primer Express software 4-7
reagent configurations 4-9
TaqMan MGB probes 4-7
TaqMan probe-based chemistry, and 4-2
terms defined 4-2
thermal cycling parameters $4-10$
troubleshooting 6-7
amplicon sites
3' primer end, and 3-12
5 ' probe end, and 3-12
and melting temperature 3-12
G/C content 3-12
screening 3-11
selection 3-11
amplicons, selecting small 3-11
analyzed run data, troubleshooting allelic discrimination 6-8
Applied Biosystems
contacting ix
customer feedback on documentation ix
Services and Support ix
Technical Communications ix
Technical Support ix
assay design
considerations 3-10
guidelines 1-8

Primer Express software 3-10
assay source, selecting 1-7
assay type
supported types 1-2
using SYBR Green I chemistry 1-6
using TaqMan probe-based chemistry 1-6

B

biohazardous waste, handling xv
biological hazard guidelines xvi
bold text, when to use vii

C

calculation methods, absolute quantification 3-34
calibrator, for sample comparisons 3-40
carryover, UNG to minimize 2-6
CAUTION, description xii
chemical safety xiii, xiv
chemical waste safety xiv, xv
chemistries, selecting 1-6
chemistry choice
assay type 2-5
quantification assays 2-5
selection criteria 2-5
coefficient of variation, calculating 3-39
comparative CT
example 3-44
formula 3-42
how used 3-45
multiplex PCR 3-50
performing 3-44
relative quantification 3-42
components, Real-Time PCR reagents $\mathrm{B}-10$
contamination, minimizing DNA 2-6
conventions
bold text vii
IMPORTANTS! vii
in this guide vii
italic text vii
menu commands vii
Notes vii
safety xii
user attention words vii
CT calculation, relative efficiency 3-44

```
custom oligonucleotide synthesis B-14
Custom TaqMan Assays
    about 1-7
    Genotyping and Gene Expression 1-7
Custom TaqMan Gene Expression Assays 3-9
Custom TaqMan SNP Genotyping Assays 4-6
customer feedback, on Applied Biosystems
    documents ix
cv, calculating 3-39
```

DANGER, description xii
data analysis, gene expression 3-32
design guidelines
assay $1-8$
primer and probe 3-13
quantification assays 3-10
disposables, Real-Time PCR B-12
DNA/cDNA quantification, thermal-cycling
parameters 3-17
documentation
feedback ix
related to this guide viii
dye-binding
methods of 2-2
requirements for Real-Time PCR 2-2
SYBR Green I dye 2-2

E

efficiency, target and reference 3-44
endogenous control, and standardizing 3-36
endpoint assay
allelic discrimination 4-2
category 1-2
described 1-5

G

G/C content, and amplicon sites 3-12
gene expression, data analysis process 3-32
guidelines
chemical safety xiv
chemical waste disposal xiv
chemical waste safety xv
guidelines, designing an assay 1-8

H

hairpin loops, and primer choice 3-7
hazard symbols. See safety symbols, on instruments hazards. See safety

IMPORTANT, description xii
IMPORTANTS!, description vii
instruments, Real-Time PCR B-2
internal positive control, plus/minus assay 5-2
IPC
incorporating 5-3
plus/minus assay 5-2
italic text, when to use vii

K

kits
Real-Time PCR B-4
Real-Time PCR calibration B-11
Real-Time PCR reaction, controls B-8
Real-Time PCR reagent B-5
RT-PCR B-7

M

melting temperature, and amplicon sites 3-12
menu commands, conventions for describing vii
mismatch, in allelic discrimination assay 4-3
MSDSs
description xiii
obtaining xiii
MSDSs, obtaining ix
multicomponenting 3-47
multiple reporter dyes 3-47
multiplex accuracy, reporter dyes 3-47
multiplex assays, rRNA primers 3-28
multiplex PCR
and relative quantification $3-45$
comparative CT example 3-50
comparative CT results 3-51
described 1-5
multiple reporter dyes 3-47
primer limiting 3-28
relative standard curve 3-48
relative standard curve example 3-48
singleplex comparison 3-27
using 3-27
MultiScribe reverse transcriptase, defined 3-16

N

no amplification control
See also NAC 5-3
nonspecific product, contamination with SYBR dye 2-6
Notes, description vii

0

one-step RT-PCR, and RNA quantification 3-15
one-step RT-PCR, primers used 3-6
optimization
allelic discrimination assays 4-6
probe concentration 3-24

P

PCR, general practices 2-7
plus/minus assay
and TaqMan probe-based chemistry 5-3
defined 5-2
incorporating an IPC 5-3
instruments 5-2
internal positive control (IPC) 5-2
process described 5-3
reagent configurations 5-5
terms described 5-3
primer concentrations, defaults 3-22
primer design, guidelines 4-8
Primer Express software
and assay design 3-10
and primer design $4-8$
and small amplicons 3-11
ordering B-3
primer limiting, multiplex assays 3-28
primer matrix
and defining limits 3-28
example of limiting 3-29
primer optimization matrix, how used 3-22
primers
and hairpin loops 3-7
limitations 3-47
probe concentration
optimizing 3-24
recommendations 3-25
probe design, allelic discrimination assay 4-7
probes, custom products listed 2-4

Q

quantification
absolute 3-33
calculating absolute 3-34
calculating relative 3-33
relative 3-32
relative formula 3-42
relative method choice 3-33
relative vs. absolute 3-32
standard curve requirements 3-36
terms defined 3-34
validation 3-42
quantification analysis, terms defined 3-4
quantification assay

5' nuclease 3-22
category 1-2
design guidelines 3-10
explained 3-4
instruments used 3-4
optimizing SYBR Green I Dye 3-23
reagent configurations 3-14
selecting chemistry 3-6
troubleshooting analyzed run data 6-2
troubleshooting chemistry problems 6-5
with SYBR Green I dye 1-6

R

radioactive waste, handling xv
reagent configurations
allelic configuration assays 4-9
selecting 3-14
selection 4-9
reagents, Real-Time PCR control B-9
Real-Time PCR
defined 1-4
instrument software, ordering B-3
quantification process 3-6
TaqMan detection process 2-3
recommendations
probe concentration 3-25
thermal-cycling parameters 3-17
relative quantification
and multiplex PCR 3-45
calculation methods 3-33
comparative CT 3-42
comparative CT formula 3-42
relative standard curve
example 3-37
multiplex PCR 3-48
performing 3-36
relative values 3-38
relative values, relative standard curve 3-38
reporter dyes, multiplex 3-47
requirements, dye-binding 2-2
RNA one-step, thermal cycling parameters 3-18
RNA quantification
and one-step RT-PCR 3-15
thermal-cycling parameters 3-18
two-step RT-PCR, and 3-15
rRNA primers, and multiplex assays 3-28
RT-PCR
method comparison 1-5
one-step 1-4
two-step 1-4
run, outline for performing 3-37

S

safety
before operating the instrument xiii
biological hazards xvi
chemical xiii
chemical waste xiv
conventions xii
guidelines xiv, xv
moving/lifting xiii
sample comparisons, using a calibrator 3-40
sequence detection system
software, ordering B-3
Services and Support, obtaining ix
small amplicons, selecting 3-11
SNP genotyping
assay contents 4-5
assay information 4-5
assay mix 4-5
properties of assays 4-5
TaqMan Assays 4-4
software
sequence detection system, ordering B-3
standard curve
absolute quantification 3-53
requirements for quantification 3-36
standardization, and use of endogenous control 3-36
standards
absolute quantities 3-53
requirements for preparation 3-36
SYBR Green I dye
chemistry described 1-6
optimizing quantification assays 3-23

T

TAMRA dye, and TaqMan probe 2-4
TaqMan Assays
Genotyping and Gene Expression 1-7
product types 1-7
SNP genotyping 4-4
TaqMan exogenous IPC
endpoint assays 5-4
kit design 5-4
TaqMan Gene Expression Assays description 3-7
TaqMan MGB probes 2-4
allelic discrimination assay 4-7
usage 2-4
when to use 4-7
TaqMan probe-based chemistry
described 1-6, 2-3
plus/minus assays 5-3
specific detection 2-3
used by 1-6
TaqMan probes, types 2-4
Technical Communications
contacting ix
e-mail address ix

Technical Support, contacting ix
thermal cycling parameters
allelic discrimination assays 4-10
DNA/cDNA quantification 3-17
recommendations 3-17
RNA quantification 3-18
training, obtaining information about ix
troubleshooting
allelic discrimination assays 6-7
allelic discrimination run data 6-8
chemistry problems 6-5
DNA concentration effects 6-7
quantification assays 6-2
two-step RT-PCR
primers used 3-6
RNA quantification 3-15

U

UNG, and minimizing carryover 2-6
Universal Master Mix reagents about SYBR Green I Mix 3-16
about TaqMan master mix 3-15
polymerase benefit 3-16
user attention words, defined vii

v

validation, quantification 3-42

W

WARNING, description xii
waste disposal, guidelines xv

Worldwide Sales and Support

Applied Biosystems vast distribution and service network, composed of highly trained support and applications personnel,
reaches 150 countries on six continents. For sales office locations and technical support, please call our local office or refer to our Web site at www.appliedbiosystems.com.

Applera is committed to providing the world's leading technology and information for life scientists. Applera Corporation consists of the Applied Biosystems and Celera Genomics businesses.

Headquarters

850 Lincoln Centre Drive
Foster City, CA 94404 USA
Phone: +1 650.638.5800
Toll Free (In North America): +1 800.345.5224
Fax: +1 650.638.5884

09/2006

[^0]: WARNING CHEMICAL HAZARD. Formamide. Exposure causes eye, skin, and respiratory tract irritation. It is a possible developmental and birth defect hazard. Read the MSDS, and follow the handling instructions. Wear appropriate protective eyewear, clothing, and gloves.
 4 DANGER ELECTRICAL HAZARD. Failure to ground the instrument properly can lead to an electrical shock. Ground the instrument according to the provided instructions.

[^1]: About An endpoint assay (also called a plate read assay) measures the amount of Endpoint Assays accumulated PCR product in fluorescence units at the end of the PCR process. The datapoint is the normalized intensity of the reporter dye, or R_{n}.
 Some endpoint assays can include both pre-PCR and post-PCR datapoints. In this case, the system calculates the delta $R_{n}\left(\Delta R_{n}\right)$ value per the following formula:

 $$
 R_{n} \text { post- } P C R-R_{n} \text { pre- } P C R=\Delta R_{n}
 $$

 ## About Multiplex

 Multiplex PCR is the use of more than one primer/probe set in the same tube. Multiplex PCR is most commonly used in 5^{\prime} nucl
 involve relative quantification of gene expression.

 Typically one probe is used to detect the target species; another probe is used to detect an endogenous control (internal control gene). Running both assays in a single tube reduces both the running costs and the dependence on accurate pipetting when splitting a sample into two separate tubes.

